Y,
N
=
O
=
IS
aZ

PROGRAMMING
THE 6502

PROGRAMMING
THE 6502

RODNAY ZAKS

FOURTH EDITION
Incorporating Answers to the Exercises

®

BERKELEY ¢ PARIS ¢ DUSSELDORF

Cover art: Daniel Le Noury

Every effort has been made to supply complete and accurate information. However,
Sybex assumes no responsibility for its use, nor for any infringements of patents or other
rights of third parties which would result. No license is granted by the equipment manufac-
turers under any patent or patent right. Manufacturers reserve the right to change circuitry
at any time without notice.

Copyright © 1983 SYBEX Inc. 2344 Sixth Street, Berkeley, CA 94710. World rights
reserved. No part of this publication may be stored in a retrieval system, copied, transmit-
ted, or reproduced in any way, including, but not limited to photocopy, photography, mag-
netic or other recording, without the prior agreement and written permission of the
publisher.

ISBN 0-89588-135-7

Library of Congress Card Number: 83-61686
First Edition published 1978. Fourth Edition 1983
Printed in the United States of America
1098765432

CONTENTS

l‘

IL.

IIL.

IvV.

VI.

BASICCONCEPTScovtvviinnecinnccccsnnsennesd

Introduction. What is Programming? Flowcharting. Information
Representation.

6502 HARDWARE ORGANIZATION38
Introduction. System Architecture. Internal Organization of the 6502. The

Instruction Execution Cycle. The Stack. The Paging Concept. The 6502
Chip. Hardware Summary.

BASIC PROGRAMMING TECHNIQUES............53

Introduction. Arithmetic Programs. BCD Arithmetic. Important Self-Test.
Logical Operations. Subroutines. Summary.

THE 6502 INSTRUCTIONSETco0000ieeee...99

PART I-OVERALL DESCRIPTION

Introduction. Classes of Instructions. Instructions Available on the 6502.
PART2-THE INSTRUCTIONS

Abbreviations. Description of Each Instruction.

ADDRESSING TECHNIQUES188

Introduction. Addressing Modes. 6502 Addressing Modes. Using the 6502
Addressing Modes. Summary.

INPUT/OUTPUT TECHNIQUES..................211

Introduction. Input/Output. Parallel Word Transfer. Bit Serial Transfer.
Basic I/0 Summary. Communicating with Input/Output Devices.
Peripheral Summary. Input/Output Scheduling. Summary. Exercises.

VIIL.

VIIIL.

IX.

XI.

INPUT/OUTPUT DEVICES254

Introduction. The Standard PIO (6520). The Internal Control Register.
The 6530. Programming a PIO. The 6522. The 6532. Summary.

APPLICATION EXAMPLES262

Introduction. Clear a Section of Memory. Polling I/0 Devices. Getting
Characters In. Testing a Character. Bracket Testing. Parity Generation.
Code Conversion: ASCII to BCD. Find the Largest Element of a Table.
Sum of N Elements. A Checksum Computation. Count the Zeroes. A
String Search. Summary.

DATASTRUCTUREScovvvviiinnee.... 275

PART I-DESIGN CONCEPTS

Introduction. Pointers. Lists. Searching and Sorting. Summary. Data Structures.
PART 2-DESIGN EXAMPLES

Introduction. Data Representation for the List. A Simple List. Alphabetic
List. Binary Tree. A Hashing Algorithm. Bubble-Sort. A Merge Algorithm.
Summary.

PROGRAM DEVELOPMENT343
Introduction. Basic Programming Choices. Software Support. The Pro-
gram Development Sequence. The Hardware Alternatives. Summary of

Hardware Alternatives. Summary of Hardware Resources. The Assembler.
Macros. Conditional Assembly. Summary.

CONCLUSIONciiiiiiiinininneencneeeeeesss..368

Technological Development. The Next Step.

APPENDICESc.ciiiiiiiiiiiiintiineiiieesenese.. 371

SEOmmboDA

Hexadecimal Conversion Table

6502 Instruction-Set: Alphabetic

6502 Instruction-Set: Binary

6502 Instruction-Set: Hexadecimal and Timing
ASCII Table

Relative Branch Table

Hex Opcode Listing

Decimal to BCD Conversion

Answers to the Exercises

vi

PREFACE

This book has been designed as a complete self-contained text
to learn programming, using the 6502. It can be used by a person
who has never programmed before, and should also be of value to
anyone using the 6502.

For the person who has already programmed, this book will
teach specific programming techniques using (or working around)
the specific characteristics of the 6502. This text covers the
elementary to intermediate techniques required to start pro-
gramming effectively.

This text aims at providing a true level of competence to the
person who wishes to program using this microprocessor. Nat-
urally, no book will teach effectively how to program, unless one
actually practices. However, it is hoped that this book will take
the reader to the point where he feels that he can start program-
ming by himself and solve simple or even moderately complex
problems using a microcomputer.

This book is based on the author’s experience in teaching more
than 1000 persons how to program microcomputers.' As a result,
it is strongly structured. Chapters normally go from the simple to
the complex. For readers who have already learned elementary
programming, the introductory chapter may be skipped. For
others who have never programmed, the final sections of some
chapters may require a second reading. The book has been de-
signed to take the reader systematically through all the basic
concepts and techniques required to build increasingly complex
programs. It is, therefore, strongly suggested that the ordering of
the chapters be followed. In addition, for effective results, it is
important that the reader attempt to solve as many exercises as
possible. The difficulty within the exercises has been carefully
graduated. They are designed to verify that the material which
has been presented is really understood. Without doing the pro-
gramming exercises, it will not be possible to realize the full
value of this book as an educational medium. Several of the exer-
cises may require time, such as the multiplication exercise for
example. However, by doing these, you will actually program and
learn by doing. This is indispensable.

For those who will have acquired a taste for programming when
reaching the end of this volume, companion volumes are available:

vii

—*“6502 Applications’’ covers input/output.
—*Advanced 6502 Programming’’ covers complex algorithms.

Other books in this series cover programming for other popular
microprocessors.

For those who wish to develop their hardware knowledge, it is
suggested that the reference books ‘‘From Chips to Systems’’ (ref.
C201A) and ‘‘Microprocessor Interfacing Techniques’’ (ref. C207) be
consulted.

The author would like to thank Rockwell International, who pro-
vided access to one of the first ASM65 development systems.

The contents of this book have been checked carefully and are
believed to be reliable. However, inevitably, some typographical
or other errors will be found. The author will be grateful for any
comments by alert readers so that future editions may benefit from
their experience. Any other suggestions for improvements, such as
other programs desired, developed, or found of value by readers,
will be appreciated.

PREFACE TO THE FOURTH EDITION

In the five years since this book was originally published, the audience
of 6502 microprocessor users has grown exponentially, and it continues
to grow. This book has expanded with its audience.

The Second Edition increased in size by almost 100 pages, with most
of the new material being added to Chapters 1 and 9. Additional
improvements have been made continually throughout the book. In this
Fourth Edition, answers to the exercises have been included as an appen-
dix (Appendix I). These answers appear in response to the request of
many readers, who wanted to make sure that their knowledge of 6502
programming was thorough.

I would like to thank the many readers of the previous editions who
have contributed valuable suggestions for improvement. Special
acknowledgements are due to Eric Novikoff and Chris Williams for their
contributions to the answers to the exercises, as well as to the complex
programming examples in Chapter 9. Special thanks also go to Daniel J.
David, for his many suggested improvements. A number of changes and
enhancements are also due to the valuable analysis and comments pro-
posed by Philip K. Hooper, John Smith, Ronald Long, Charles Curlay,
N. Harris, John McClenon, Douglas Trusty, Fletcher Carson, and Pro-
fessor Myron Calhoun.

viii

Acknowledgements

The author would like to express his appreciation to Rockwell Interna-
tional and, in particular, to Scotty Maxwell, who made available to him
one of the very first system 65 development systems. The availability of
this powerful development tool, at the time the first version of this book
was being written, was a major help for the accurate and efficient check-
out of all the programs. I would also like to thank Professor Myron
Calhoun for his contributions.

1
BASIC CONCEPTS

INTRODUCTION

This chapter will introduce the basic concepts and definitions re-
lating to computer programming. The reader already familiar with
these concepts may want to glance quickly at the contents of this
chapter and then move on to Chapter 2. It is suggested, however,
that even the experienced reader look at the contents of this intro-
ductory chapter. Many significant concepts are presented here in-
cluding, for example, two’s complement, BCD, and other represen-
tations. Some of these concepts may be new to the reader; others
may improve the knowledge and skills of experienced programmers.

WHAT IS PROGRAMMING?

Given a problem, one must first devise a solution. This solution,
expressed as a step-by-step procedure, is called an algorithm. An
algorithm is a step-by-step specification of the solution to a given
problem. It must terminate in a finite number of steps. This
algorithm may be expressed in any language or symbolism. A sim-
ple example of an algorithm is:

1—insert key in the keyhole

2—turn key one full turn to the left
3—seize doorknob

4—turn doorknob left and push the door

PROGRAMMING THE 6502

At this point, if the algorithm is correct for the type of lock in-
volved, the door will open. This four-step procedure qualifies as an
algorithm for door opening.

Once a solution to a problem has been expressed in the form of
an algorithm, the algorithm must be executed by the computer.
Unfortunately, it is now a well-established fact that computers
cannot understand or execute ordinary spoken English (or any
other human language). The reason lies in the syntactic ambiguity
of all common human languages. Only a well-defined subset of
natural language can be ‘“‘understood’” by the computer. This is
called a programming language.

Converting an algorithm into a sequence of instructions in a pro-
gramming language is called programming. To be more specific,
the actual translation phase of the algorithm into the program-
ming language is called coding. Programming really refers not just
to the coding but also to the overall design of the programs and
“data structures” which will implement the algorithm.

Effective programming requires not only understanding the
possible implementation techniques for standard algorithms, but
also the skillful use of all the computer hardware resources, such as
internal registers, memory, and peripheral devices, plus a creative
use of appropriate data structures. These techniques will be
covered in the next chapters.

Programming also requires a strict documentation discipline, so
that the programs are understandable to others, as well as to the
author. Documentation must be both internal and external to the
program.

Internal program documentation refers to the comments placed
in the body of a program, which explain its operation.

External documentation refers to the design documents which
are separate from the program: written explanations, manuals,
and flowcharts.

FLOWCHARTING

One intermediate step is almost always used between the
algorithm and the program. 1t is called a flowchart. A flowchart is
simply a symbolic representation of the algorithm expressed as a
sequence of rectangles and diamonds containing the steps of the
algorithm. Rectangles are used for commands, or ‘‘executable
statements.”” Diamonds are used for tests such as: If information

BASIC CONCEPTS

X is true, then take action A, else B. Instead of presenting a formal
definition of flowcharts at this point, we will introduce and discuss
flowcharts later on in the book when we present programs.
Flowcharting is a highly recommended intermediate step be-
tween the algorithm specification and the actual coding of the solu-
tion. Remarkably, it has been observed that perhaps 10% of the
programming population can write a program successfully with-
out having to flowchart. Unfortunately, it has also been observed
that 90% of the population believes it belongs to this 10%! The
result: 80% of these programs, on the average, will fail the first
time they are run on a computer. (These percentages are naturally
not meant to be accurate.) In short, most novice programmers sel-
dom see the necessity of drawing a-flowchart. This usually results
in ““‘unclean” or erroneous programs. They must then spend a long
time testing and correcting their program (this is called the

START

READ TEMPERATURE SETTING “T*
ON THERMOSTAT BOX

1 !

READ ACTUAL ROOM TEMPERATURE “R” J

N

FROM THERMOMETER OR OTHER SENSOR|

TOO COLD) TOO HOTY)

HEATERON |4 HEATER OFF

(%]

(OPTIONAL DELAY) (OPTIONAL DELAY)

Fig. 1-1: A Flowchart for Keeping Room Temperature Constant

PROGRAMMING THE 6502

debugging phase). The discipline of flowcharting is therefore
highly recommended in all cases. It will require a small amount of
additional time prior to the coding, but will usually result in a clear
program which executes correctly and quickly. Once flowcharting
is well understood, a small percentage of programmers will be able
to perform this step mentally without having to do it on paper. Un-
fortunately, in such cases the programs that they write will usual-
ly be hard to understand for anybody else without the documenta-
tion provided by flowcharts. As a result, it is universally recom-
mended that flowcharting be used as a strict discipline for any
significant program. Many examples will be provided throughout
the book.

INFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or
in the form of characters. Let us examine here the external and
internal representations of information in a computer.

INTERNAL REPRESENTATION OF INFORMATION

All information in a computer is stored as groups of bits. A bit
stands for a binary digit (‘‘0”’ or ‘‘1”’). Because of the limitations
of conventional electronics, the only practical representation of infor-
mation uses two-state logic (the representation of the state ‘‘0’’ and
“1”’). The two states of the circuits used in digital electronics
are generally ‘“‘on”” or ‘“‘off”’, and these are represented ldgi-
cally by the symbols ‘0’ or *‘1’’. Because these circuits are
used to implement ‘‘logical’”’ functions, they are called ‘‘binary
logic.” As a result, virtually all information-processing today is
performed in binary format. In the case of microprocessors in
general, and of the 6502 in particular, these bits are structured in
groups of eight. A group of eight bits is called a byte. A group of
four bits is called a nibble.

Let us now examine how information is represented internally in
this binary format. Two entities must be represented inside the
computer. The first one is the program, which is a sequence of
instructions. The second one is the data on which the program will
operate, which may include numbers or alphanumeric text. We will
discuss below three representations: program, numbers, and alpha-
numerics.

10

BASIC CONCEPTS

Program Representation

All instructions are represented internally as single or multiple
bytes. A so-called ‘‘short instruction” is represented by a single
byte. A longer instruction will be represented by two or more
bytes. Because the 6502 is an eight-bit microprocessor, it fetches
bytes successively from its memory. Therefore, a single-byte
instruction always has a potential for executing faster than a two-
or three-byte instruction. It will be seen later that this is an impor-
tant feature of the instruction set of any microprocessor and in
particular the 6502, where a special effort has been made to pro-
vide as many single-byte instructions as possible in order to im-
prove the efficiency of the program execution. However, the limita-
tion to 8 bits in length has resulted in important restrictions which
will be outlined. This is a classic example of the compromise be-
tween speed and flexibility in programming. The binary code used
to represent instructions is dictated by the manufacturer. The
6502, like any other microprocessor, comes equipped with a fixed
instruction set. These instructions are defined by the manufac-
turer and are listed at the end of this book, with their code. Any
program will be expressed as a sequence of these binary instruc-
tions. The 6502 instructions are presented in Chapter 4.

Representing Numeric Data

Representing numbers is not quite straightforward, and several
cases must be distinguished. We must first represent integers, then
signed numbers, i.e., positive and negative numbers, and finally we
must be able to represent decimal numbers. Let us now address
these requirements and possible solutions.

Representing integers may be performed by using a direct
binary representation. The direct binary representation is simply
the representation of the decimal value of a number in the binary
system. In the binary system, the right-most bit represents 2 to
the power 0. The next one to the left represents 2 to the power 1,
the next represents 2 to the power 2, and the left-most bit
represents 2 to the power 7=128.

b,beb;b,bsb,b,b,

represents
b121 + b626 + b526 + b424 + b323 + 1)222 + b12l + b020

11

PROGRAMMING THE 6502

The powers of 2 are:
2" = 128,2°=64,2°=32,2¢=16,2°=8,22=4,2'=2,2"'=1

The binary representation is analogous to the decimal representa-
tion of numbers, where ‘‘123"’ represents:

1 X 100 = 100
2X 10= 20
3X 1= 3
= 123
Note that 100 = 10% 10 = 10, 1 = 10°.
In this ‘“positional notation,”” each digit represents a power of 10.

In the binary system, each binary digit or ‘‘bit’’ represents a power
of 2, instead of a power of 10 in the decimal system.

+
+

Example: ¢‘00001001°’ in binary represents:

[
X

(2°)
(2"
(2?)
(29)
(29
(2°)
(29)
(27

ococooco~oO
XXXXXXX
® RN D®DN N -
I I T | I

v/loococowoo~

p—t
DN O W

in decimal:
Let us examine some more examples:
“10000001”’ represents:

[I T | I
[
N
PWOOOOOO =

~ooococoo~
XXXXXXXX
oI RN NG

(=)
N W

in decimal: =129
“10000001°’ represents, therefore, the decimal number 129.

12

BASIC CONCEPTS

By examining the binary representation of numbers, you will
understand why bits are numbered from 0 to 7, going from right to
left. Bit 0 is ‘‘b,”’ and corresponds to 2°. Bit 1 is “‘b,”” and cor-
responds to 2!, and so on.

Decimal | Binary Decimal | Binary
0 | 00000000 32 | 00100000
1| 00000001 33 | 00100001
2| 00000010 .
3| 00000011 .
4| 00000100 .
5| 00000101 63 | 00111111
6 | 00000110 64 | 01000000
7| 00000111 65 | 01000001
8 | 00001000 .

9 | 00001001 .

10 | 00001010 127 | 01111111
11 | 00001011 128 | 10000000
12 | 00001100 129 | 10000001
13 | 00001101

14 | 00001110 .

15 | 00001111

16 | 00010000 ’

17 | 00010001 .

. 254 | 11111110
31 | 00011111 255 | 11111111

Fig. 1-2: Decimal-Binary Table

The binary equivalents of the numbers from 0 to 255 are shown
in Fig. 1-2.

Exercise 1.1: What is the decimal value of *11111100"?

13

PROGRAMMING THE 6502

Decimal to Binary

Conversely, let us compute the binary equivalent of “11°’ decimal:
11 +2=>5 remains 1 —e1 (LSB)

5+2=2 remains 1 —e1

2+2=1 remains 0 —=0
1+2=0 remains 1 —e1 (MSB)

The binary equivalent is 1011 (read right-most column from bottom
to top).

The binary equivalent of a decimal number may be obtained by dividing
successively by 2 until a quotient of 0 is obtained.

Exercise 1.2: What is the binary for 257?
Exercise 1.3: Convert 19 to binary, then back to decimal.
Operating on Binary Data

The arithmetic rules for binary numbers are straightforward. The rules
for addition are:

0+0= 0
0+1= 1
1+0= 1
1+1=(1)0

where (1) denotes a ‘“carry’’ of 1 (note that ‘10"’ is the binary equivalent
of ¢“2”’ decimal). Binary subtraction will be performed by ‘‘adding the
complement” and will be explained once we learn how to represent
negative numbers.

Example:
) 10
+() +01
=(@3) 11

Addition is performed just like in decimal, by adding columns, from
right to left:

Adding the right-most column:

10
+01

(0 + 1 = 1. No carry.)

14

BASIC CONCEPTS
Adding the next column:
10
+01
i1 (1 + 0 =1. No carry.)
Exercise 1.4: Compute 5 + 10 in binary. Verify that the result is 15.

Some additional examples of binary addition:

0010 2) 0011 (3)
+0001 (1) +0001 (1)
=0011 (3) =0100 (4)

This last example illustrates the role of the carry.

Looking at the right-most bits: 1 + 1 = (1) 0
A carry of 1 is generated, which must be added to the next bits:

001 — column 0 has just been added
+000 —
+ 1 (carry)

= (1)0— where (1) indicates a new
carry into column 2.

The final result is: 0100

Another example:

0111 (7)
+0011 + (3)
1010 =(10)

In this example, a carry is again generated, up to the left-most co-
lumn.

Exercise 1.5: Compute the result of:

1111
+0001

=?

15

PROGRAMMING THE 6502

Does the result hold in four bits?

With eight bits, it is therefore possible to represent directly the
numbers ‘00000000’ to ““11111111,” i.e., ‘0" to ““255". Two
obstacles should be visible immediately. First, we are only
representing positive numbers. Second, the magnitude of these
numbers is limited to 255 if we use only eight bits. Let us address
each of these problems in turn.

Signed Binary

In a signed binary representation, the left-most bit is used to in-
dicate the sign of the number. Traditionally, ‘0"’ is used to denote
a positive number while ‘1" is used to denote a negative number.
Now “11111111” will represent —127, while “01111111" will
represent +127. We can now represent positive and negative
numbers, but we have reduced the maximum magnitude of these
numbers to 127.

Example: “‘0000 0001 represents +1 (the leading ‘0"’ is *“‘+",
followed by ‘000 0001 = 1).

1(1000 0001" is _1 (the leading uln iS u_n).

Exercise 1.6: What is the representation of **—5"" in signed binary?

Let us now address the magnitude problem: in order to represent
larger numbers, it will be necessary to use a larger number of bits.
For example, if we use sixteen bits (two bytes) to represent
numbers, we will be able to represent numbers from —32K to
+32K in signed binary (1K in computer jargon represents 1,024).
Bit 15 is used for the sign, and the remaining 15 bits (bit 14 to bit
0) are used for the magnitude: 2'* = 32K. If this magnitude is still
too small, we will use 3 bytes or more. If we wish to represent large
integers, it will be necessary to use a larger number of bytes inter-
nally to represent them. This is why most simple BASICs, and
other languages, provide only a limited precision for integers. This
way, they can use a shorter internal format for the numbers which
they manipulate. Better versions of BASIC, or of these other
languages, provide a larger number of significant decimal digits at
the expense of a large number of bytes for each number.

Now let us solve another problem, the one of speed efficiency.
We are going to attempt performing an addition in the signed

16

BASIC CONCEPTS

"

binary representation which we have introduced. Let us add *‘—5
and “+7".

+17 is represented by 00000111
—5 is represented by 10000101

The binary sum is: 10001100, or —12

This is not the correct result. The correct result should be +2. In
order to use this representation, special actions must be taken, de-
pending on the sign. This results in increased complexity and re-
duced performance. In other words, the binary addition of signed
numbers does not “‘work correctly.”” This is annoying. Clearly, the
computer must not only represent information, but also perform
arithmetic on it.

The solution to this problem is called the two's complement
representation, which will be used instead of the signed binary
representation. In order to introduce two's complement let us first
introduce an intermediate step: one’s complement.

One’s Complement

In the one’s complement representation, all positive integers are
represented in their correct binary format. For example ‘43" is
represented as usual by 00000011. However, its complement *‘—3"’
is obtained by complementing every bit in the original representa-
tion. Each 0 is transformed into a 1 and each 1 is transformed into
a 0. In our example, the one’s complement representation of ‘‘—3”’
will be 11111100.

Another example:

+2 is 00000010
—21is 11111101

Note that, in this representation, positive numbers start with a
“0” on the left, and negative ones with a ‘1"’ on the left.

Exercise 1.7: The representation of “+6” is “00000110°. What is
the representation of *‘—6"" in one’s complement?

As a test, let us add minus 4 and plus 6:

17

PROGRAMMING THE 6502

—4is 11111011
+6 is 00000110

the sum is: (1) 00000001 where (1) indicates a
carry

The “‘correct result”’ should be “2"’, or “00000010°’.

Let us try again:

—3is 11111100
—2is 11111101
1) 00000001
The sum is: (1)
or ““1,” plus a carry. The correct result should be ‘‘—5.”” The repre-
sentation of ‘-5’ is 11111010. It did not work.

This representation does represent positive and negative
numbers. However the result of an ordinary addition does not
always come out ‘‘correctly.”” We will use still another representa-
tion. It is evolved from the one’s complement and is called the
two’s complement representation.

Two’s Complement Representation

In the two’s complement representation, positive numbers are
still represented, as usual, in signed binary, just like in one’s com-
plement. The difference lies in the representation of negative
numbers. A negative number represented in two’s complement is
obtained by first computing the one’s complement, and then ad-
ding one. Let us examine this in an example:

+3 is represented in signed binary by 00000011. Its one’s com-
plement representation is 11111100. The two’s complement is ob-
tained by adding one. It is 11111101.

Let us try an addition:

(3) 00000011
+(5) +00000101

=(8) =00001000

The result is correct.

18

BASIC CONCEPTS

Let us try a subtraction:

(3) 00000011
(—5) +11111011

=11111110
Let us identify the result by computing the two’s complement:

the one’s complement of 11111110 is 00000001
Adding1 + 1

therefore the two’s complement is 00000010 or +2
Our result above, “11111110” represents ‘“‘—2"". It is correct.

We have now tried addition and subtraction, and the results were correct
(ignoring the carry). It seems that two’s complement works!

Exercise 1.8: What is the two’s complement representation of “‘+127°°?

Exercise 1.9: What is the two’s complement representation of ‘‘—128°°?

Let us now add +4 and —3 (the subtraction is performed by add-
ing the two’s complement):

+4 is 00000100
—3is 11111101

The result is: (1) 00000001

If we ignore the carry, the result is 00000001, i.e., ‘‘1”’ in decimal. This
is the correct result. Without giving the complete mathematical proof,
let us simply state that this representation does work. In two’s comple-
ment, it is possible to add or subtract signed numbers regardless of the
sign. Using the usual rules of binary addition, the result comes out
correctly, including the sign. The carry is ignored. This is a very signifi-
cant advantage. If it were not the case, one would have to correct the
result for sign every time, causing a much slower addition or subtraction
time.

For the sake of completeness, let us state that two’s complement is
simply the most convenient representation to use for simpler processors
such as microprocessors. On complex processors, other representations
may be used. For example, one’s complement may be used, but it requires
special circuitry to ‘‘correct the result.”’

19

PROGRAMMING THE 6502

From this point on, all signed integers will implicitly be represented
internally in two’s complement notation. See Fig. 1-3 for a table of
two’s complement numbers.

Exercise 1.10: What are the smallest and the largest numbers which one
may represent in two’s complement notation, using only one byte?

Exercise 1.11: Compute the two’s complement of 20. Then compute the
two’s complement of your result. Do you find 20 again?

The following examples will serve to demonstrate the rules of two’s
complement. In particular, C denotes a possible carry (or borrow)
condition. (It is bit 8 of the result.)

V denotes a two’s complement overflow, i.e., when the sign of the
result is changed ‘‘accidentally’’ because the numbers are too
large. It is an essentially internal carry from bit 6 into bit 7 (the
sign bit). This will be clarified below.

Let us now demonstrate the role of the carry “‘C’’ and the overflow
‘ (V ’).

The Carry C

Here is an example of a carry:

(128) 10000000
+(129) +10000001

(257) = (1) 00000001
where (1) indicates a carry.

The result requires a ninth bit (bit ‘8", since the right-most bit is
*“0”’). 1t is the carry bit.

If we assume that the carry is the ninth bit of the result, we
recognize the result as being 100000001 = 257.

However, the carry must be recognized and handled with care.
Inside the microprocessor, the registers used to hold information
are generally only eight-bit wide:When storing the result, only bits O to
7 will be preserved.

A carry, therefore, always requires special action: it must be
detected by special instructions, then processed. Processing the
carry means either storing it somewhere (with a special instruc-
tion), or ignoring it, or deciding that it is an error (if the largest
authorized result is ““11111111").

20

BASIC CONCEPTS

+ 2’s complement 2’s complement
code - code

+127 01111111 — 128 10000000
+126 01111110 —-127 10000001
+125 01111101 -126 10000010

-125 10000011
+65 01000001 - 65 10111111
+64 01000000 —-64 11000000
+63 00111111 -63 11000001
+33 00100001 -33 11011111
+32 00100000 -32 11100000
+31 00011111 =131 11100001
+17 00010001 -17 11101111
+16 00010000 -16 11110000
+15 00001111 -15 11110001
+14 00001110 -14 11110010
+13 00001101 -13 11110011
+12 00001100 -12 11110100
+11 00001011 -11 11110101
+10 00001010 -10 11110110
+9 00001001 -9 11110111
+8 00001000 -8 11111000
+7 00000111 -7 11111001
+6 00000110 -6 11111010
+5 00000101 -5 11111011
+4 00000100 -4 11111100
+3 00000011 -3 11111101
+2 00000010 =2 11111110
+1 00000001 -1 1111111
+0 00000000

Fig. 1-3: 2's Complement Table

21

PROGRAMMING THE 6502

Overflow V

Here is an example of overflow:

bit 6
bit 7—+'
01000000 (64)
+ 01000001 +(65)

=10000001 =(—127)

An internal carry has been generated from bit 6 into bit 7. This is
called an overflow.

The result is now negative, *‘by accident.” This situation must
be detected, so that it can be corrected.

Let us examine another situation:

11111111 (—1)
+11111111 +(-1)

=(%) 11111110 =(—2)

carry

In this case, an internal carry has been generated from bit 6 into
bit 7, and also from bit 7 into bit 8 (the formal ‘‘Carry” C we have
examined in the preceding section). The rules of two’s complement
arithmetic specify that this carry should be ignored. The result is
then correct.

This is because the carry from bit 6 into bit 7 did not change the
sign bit.

This is not an overflow condition. When operating on negative
numbers, the overflow is not simply a carry from bit 6 into bit 7.
Let us examine one more example.

11000000 (—64)
+10111111 (—65)

=(%) 01111111 (+127)

carry

This time, there has been no internal carry from bit 6 into bit 7, but
there has been an external carry. The result is incorrect, as bit 7
has been changed. An overflow condition should be indicated.

22

BASIC CONCEPTS

Overflow will occur in four situations:

1—adding large positive numbers

2—adding large negative numbers

3—subtracting a large positive number from a large negative
number

4—subtracting a large negative number from a large positive
number.

Let us now improve our definition of the overflow:

Technically, the overflow indicator, a special bit reserved for this
purpose, and called a ‘‘flag,”” will be set when there is a carry from
bit 6 into bit 7 and no external carry, or else when there is no carry
from bit 6 into bit 7 but there is an external carry. This indicates
that bit 7, i.e., the sign of the result, has been accidentally
changed. For the technically-minded reader, the overflow flag is
set by Exclusive ORing the carry-in and carry-out of bit 7 (the sign
bit). Practically every microprocessor is supplied with a special
overflow flag to automatically detect this condition, which re-
quires corrective action.

Overflow indicates that the result of an addition or a subtraction
requires more bits than are available in the standard eight-bit
register used to contain the result.

The Carry and the Querflow

The carry and the overflow bits are called ‘‘flags.’”” They are pro-
vided in every microprocessor, and in the next chapter we will
learn to use them for effective programming. These two indicators
are located in a special register called the flags or ‘‘status”
register. This register also contains additional indicators whose
function will be clarified in Chapter 4.

Examples

Let us now illustrate the operation of the carry and the overflow
in actual examples. In each example, the symbol V denotes the
overflow, and C the carry.

If there has been no overflow, V = 0. If there has been an
overflow, V = 1 (same for the carry C). Remember that the rules of
two's complement specify that the carry be ignored. (The
mathematical proof is not supplied here.)

PROGRAMMING THE 6502

Positive-Positive

00000110 (+6)
+ 00001000 (+8)

= 00001110 (+14) V:0 C:0
(CORRECT)
Positive-Positive with Overflow

01111111 (+127)
+ 00000001 (+1)

= 10000000 (—128) V:1 C:.0

The above is invalid because an overflow has occurred.
(ERROR)

Positive-Negative (result positive)

00000100 (+4)
+ 11111110 (—2)

=(1)00000010 (+2) V:0 C:1 (disregard)
(CORRECT)
Positive-Negative (result negative)

00000010 (+2)
+ 11111100 (—4)

= 11111110 (—2) V:0 C.0
(CORRECT)
Negative-Negative

11111110 (—2)
+ 11111010 (—4)

=(1)11111010 (—6) V:0 C:1 (disregard)
(CORRECT)
Negative-Negative with Overflow

10000001 (—127)
+ 11000010 (—62)

=(1)01000011 (67) V:1 C:1
(ERROR)

24

BASIC CONCEPTS

This time an ‘‘underflow’ has occurred, by adding two large
negative numbers. The result would be —189, which is too large to
reside in eight bits.

Exercise 1.12: Complete the following additions. Indicate the
result, the carry C, the overflow V, and whether the result is correct
or not:

10111111 () 11111010 ()
+11000001 (—) +11111001 (—)
= V: C: = V: C:
O CORRECT CJ ERROR O CORRECT O ERROR
00010000 () 01111110 ()
+01000000 () +00101010 ()
= V: C: = V: C:
O CORRECT [l ERROR O CORRECT O ERROR

Exercise 1.13: Can you show an example of overflow when adding a
positive and a negative number? Why?

Fixed Format Representation

Now we know how to represent signed integers. However, we
have not yet resolved the problem of magnitude. If we want to
represent larger integers, we will need several bytes. In order to
perform arithmetic operations efficiently, it is necessary to use a
fixed number of bytes rather than a variable one. Therefore, once
the number of bytes is chosen, the maximum magnitude of the
number which can be represented is fixed.

Exercise 1.14: What are the largest and the smallest numbers
which may be represented in two bytes using two’s complement?

The Magnitude Problem

When adding numbers we have restricted ourselves to eight bits
because the processor we will use operates internally on eight bits
at a time. However, this restricts us to the numbers in the range
—128 to +127. Clearly, this is not sufficient for many applications.

Multiple precision will be used to increase the number of digits
which can be represented. A two-, three-, or N-byte format may

25

PROGRAMMING THE 6502

then be used. For example, let us examine a 16-bit, ‘‘double-pre-
cision” format:

00000000 00000000 is “0”
00000000 00000001 is “1”

01111111 11111111 is “32767"
11111111 11111111 is “—1"
11111111 11111110 is “—2”

Exercise 1.15: What is the largest negative integer which can be
represented in a two’s complement triple-precision format?

However, this method will result in disadvantages. When adding
two numbers, for example, we will generally have to add them
eight bits at a time. This will be explained in Chapter 4 (Basic Pro-
gramming Techniques). It results in slower processing. Also, this
representation uses 16 bits for any number, even if it could be
represented with only eight bits. It is, therefore, common to use 16
or perhaps 32 bits, but seldom more.

Let us consider the following important point: whatever the
number of bits N chosen for the two’s complement representation,
it is fixed. If any result or intermediate computation should
generate a number requiring more than N bits, some bits will be
lost. The program normally retains the N left-most bits (the most
significant) and drops the low-order ones. This is called truncating
the result.

Here is an example in the decimal system, using a six digit
representation:

123456
X 1.2

246912
123456

=1481472

The result requires 7 digits! The ‘2" after the decimal point will be
dropped and the final result will be 148147. It has been truncated.
Usually, as long as the position of the decimal point is not lost, this
method is used to extend the range of the operations which may be
performed, at the expense of precision.

The problem is the same in binary. The details of a binary multi-

26

BASIC CONCEPTS

plication will be shown in Chapter 4.

This fixed-format representation may cause a loss of precision,
but it may be sufficient for usual computations or mathematical
operations.

Unfortunately, in the case of accounting, no loss of precision is
tolerable. For example, if a customer rings up a large total on a
cash register, it would not be acceptable to have a five figure
amount to pay, which would be approximated to the dollar.
Another representation must be used wherever precision in the
result is essential. The solution normally used is BCD, or
binary-coded decimal.

BCD Representation

The principle used in representing numbers in BCD is to encode
each decimal digit separately, and to use as many bits as necessary
to represent the complete number exactly. In order to encode each
of the digits from 0 through 9, four bits are necessary. Three bits
would only supply eight combinations, and can therefore not en-
code the ten digits. Four bits allow sixteen combinations and are
therefore sufficient to encode the digits ‘0"’ through ““9”". It can
also be noted that six of the possible codes will not be used in the
BCD representation (see Fig. 1-3). This will result later on in a po-
tential problem during additions and subtractions, which we will
have to solve. Since only four bits are needed to encode a BCD

BCD BCD
CODE SYMBOL CODE SYMBOL

0000 0 1000 8
0001 1 1001 9
0010 2 1010 unused
0011 3 1011 unused
0100 4 1100 unused
ol1o1 5 1101 unused
0110 6 1110 unused
o111 7 1111 unused

Fig. 1-4: BCD Table

27

PROGRAMMING THE 6502

digit, two BCD digits may be encoded in every byte. This is called
“packed BCD.”

As an example, ‘00000000’ will be ‘00"’ in BCD. “10011001"
will be “99”".
A BCD code is read as follows:

0010 0001

BCD digit “2” '
BCD digit “1” «——
BCD number ¢“21”’
Exercise 1.16: What is the BCD representation for 29°°? “91°°?

Exercise 1.17: Is ‘10100000’ a valid BCD representation? Why?

As many bytes as necessary will be used to represent all BCD
digits. Typically, one or more nibbles will be used at the beginning
of the representation to indicate the total number of nibbles, i.e.,
the total number of BCD digits used. Another nibble or byte will
be used to denote the position of the decimal point. However, con-
ventions may vary.

Here is an example of a representation for multibyte BCD in-
tegers:

[3 | + | 2 | 2 [1 | (3bytes
W
nun%ber number ‘221"
of digits

(up to 255) sign

This represents +221
(The sign may be represented by 0000 for +, and 0001 for —, for
example.)

Exercise 1.18: Using the same convention, represent *“—23123°°, Show
it in BCD format, as above, then in binary.

Exercise 1.19: Show the BCD for “222°° and ‘‘111°’, then for the result
0f 222 x 111. (Compute the result by hand, then show it in the above
representation.)

The BCD representation can easily accommodate decimal
numbers.

28

BASIC CONCEPTS

For example, +2.21 may be represented by:

3 T 2] +] 2 [2 [1 |
N — N
£ l l ’ 221
3 digits “.” ison the +
left of digit 2

The advantage of BCD is that it yields absolutely correct
results. Its disadvantage is that it uses a large amount of memory
and results in slow arithmetic operations. This is acceptable only
in an accounting environment and is normally not used in other
cases.

Exercise 1.20: How many bits are required to encode ‘9999’ in BCD?
And in Two’s complement?

We have now solved the problems associated with the represen-
tation of integers, signed integers and even large integers. We
have even already presented one possible method of representing
decimal numbers, with BCD representation. Let us now examine
the problem of representing decimal numbers in a fixed length for-
mat.

Floating-Point Representation

The basic principle is that decimal numbers must be represented
with a fixed format. In order not to waste bits, the representation
will normalize all the numbers.

For example, ‘0.000123" wastes three zeros on the left of the
number, which have no meaning except to indicate the position of
the decimal point. Normalizing this number results in .123 X 10-%,
“.1238"” is called a normalized mantissa, *‘—3" is called the expo-
nent. We have normalized this number by eliminating all the meaning-
less zeros on the left of it and adjusting the exponent.

Let us consider another example:
22.1 is normalized as .221 x 10?

or M X 10E where M is the mantissa, and E is the exponent.

29

PROGRAMMING THE 6502

It can be readily seen that a normalized number is characterized
by a mantissa less than 1 and greater or equal to .1 in all cases
where the number is not zero. In other words, this can be repre-
sented mathematically by:

A<M<lorl0'<M<10°
Similarly, in the binary representation:
T 21<M<2° (or .5<MK<1)
Where M is the absolute value of the mantissa (disregarding the
sign).
For example:
111.01 is normalized as: .11101 X 22
The mantissa is 11101.

The exponent is 3.

Now that we have defined the principle of the representation,
let us examine the actual format. A typical floating-point represen-
tation appears below.

31 24 23 16 15 8 7 0
T T T T
S EXP S M A N T I S S
1 | 1 1

A

Fig. 1-5: Typical Floating-Point Representation

In the representation used in this example, four bytes are used
for a total of 32 bits. The first byte on the left of the illustration is
used to represent the exponent. Both the exponent and the man-
tissa will be represented in two’s complement. As a result, the
maximum exponent will be —128. “‘S’’ in Fig. 1-5 denotes the sign
bit.

Three bytes are used to represent the mantissa. Since the first
bit in the two’s complement representation indicates the sign, this
leaves 23 bits for the representation of the magnitude of the man-
tissa.

30

BASIC CONCEPTS

Exercise 1.21: How many decimal digits can the mantissa repre-
sent with the 23 bits?

This is only one example of a floating point representation. It is
possible to use only three bytes, or it is possible to use more. The
four-byte representation proposed above is just a common one
which represents a reasonable compromise in terms of accuracy,
magnitude of numbers, storage utilization, and efficiency in
arithmetic operation.

We have now explored the problems associated with the rep-
resentation of numbers and we know how to represent them in in-
teger form, with a sign, or in decimal form. Let us now examine
how to represent alphanumeric data internally.

Representing Alphanumeric Data

The representation of alphanumeric data, i.e. characters, is com-
pletely straightforward: all characters are encoded in an eight-bit
code. Only two codes are in general use in the computer world, the
ASCII Code, and the EBCDIC Code. ASCII stands for ‘‘American
Standard Code for Information Interchange,”’ and is universally
used in the world of microprocessors. EBCDIC is a variation of
ASCII used by IBM, and therefore not used in the microcomputer
world unless one interfaces to an IBM terminal.

Let us briefly examine the ASCII encoding. We must encode 26
letters of the alphabet for both upper and lower case, plus 10~
numeric symbols, plus perhaps 20 additional special symbols. This
can be easily accomplished with 7 bits, which allow 128 possible
codes. (See Fig.1-6.) All characters are therefore encoded in 7 bits.
The eighth bit, when it is used, is the parity bit. Parity is a tech-
nique for verifying that the contents of a byte have not been ac-
cidentally changed. The number of 1's in the byte is counted and
the eighth bit is set to one if the count was odd, thus making the
total even. This is called even parity. One can also use odd parity,
i.e. writing ‘the eighth bit (the left-most) so that the total number of
1’s in the byte is odd.

Example: let us compute the parity bit for *‘0010011”’ using even
parity. The number of 1's is 3. The parity bit must therefore be a 1
so that the total number of bits is 4, i.e. even. The result is
10010011, where the leading 1 is the parity bit and 0010011 iden-
tifies the character.

31

PROGRAMMING THE 6502

The table of 7-bit ASCII codes is shown in Fig. 1-6. In practice, it
is used ‘‘as is,”’ i.e. without parity, by adding a 0 in the left-most
position, or else with parity, by adding the appropriate extra bit on
the left.

Exercise 1.22: Compute the 8-bit representation of the digits ‘0"
through 9", using even parity. (This code will be used in applica-
tion examples of Chapter 8.)

Exercise 1.23: Same for the letters ‘A"’ through “'F".

Exercise 1.24: Using a non-parity ASCII code (where the left-most
bit is *‘0”), indicate the binary contents of the 4 bytes below:
‘OA ”’ "‘T”’ “S’,’ ‘(X”’.

BIT NUMBERS
o o Jo o v b p
| 0| o 1 ¥ Jo]o| 1
> o] 0 11 o] 1| o 1
by | bo|bs | be|bs |bs]b HEX 1
J ‘ ‘ ‘ l J ‘ o} 2 3 lals]|e 7
HEX 0
ojojo]o o NuL|DE| s | o |@f P P
ojojo]: 1 SOH|DCI| ! v jajQ@]a] q
ofo|1]o 2 s1x | bc2 2 |s|RrR}|b r
o]o || 3 Ex |oca| # 3 Jc|s|c s
olv]o]o 4 tor |oca| a lo|71]4d '
o1 o 5 eNa [Nak| % s |eju]e v
of1r]1v]o 6 Ack |syN| & 6 {Flv]t¢ v
o1 {1 | 7 BEL | ETB| - 7 le|w]lal| w
1{ojo}o 8 BS |CAN| ¢ 8 | H| x x
1vjolo] 9 HT [em |) [2N N A y
1o 1]o 10 tF |sus| - Jlz}i z
o | n vt lesc| + LSS {
111]o]o] 12 F| ks < |uofN\N]] !
BN ERE 13 wR|es| - = |[ml1|m]| }
1 1 1] 14 SO | RS > N| A n -~
v 15 st jus) s ? Joj_]e°| om

Fig. 1-6: ASCII Conversion Table

In specialized situations such as telecommunications, other
codings may be used such as error-correcting codes. However they
are beyond the scope of this book.

32

BASIC CONCEPTS

We have examined the usual representations for both program
and data inside the computer. Let us now examine the possible ex-
ternal representations.

EXTERNAL REPRESENTATION OF INFORMATION

The external representation refers to the way information is pre-
sented to the user, i.e. generally to the programx’ner. Information
may be presented externally in essentially three formats: binary,
octal or hexdecimal, and symbolic.

1. Binary

It has been seen that information is stored internally in bytes,
which are sequences of eight bits (0’s or 1’s). It is sometimes
desirable to display this internal information directly in its binary
format and this is called binary representation. One simple exam-
ple is provided by Light Emitting Diodes (LEDs) which are essen-
tially miniature lights, on the front panel of the microcomputer. In
the case of an eight-bit microprocessor, a front panel will typically
be equipped with eight LEDs to display the contents of any inter-
nal register. (A register is used to hold eight bits of information
and will be described in Chapter 2). A lighted LED indicates a one.
A zero is indicated by an LED which is not lighted. Such a binary
representation may be used for the fine debugging of a complex
program, especially if it involves input/output, but is naturally
impractical at the human level. This is because in most cases, one
likes to look at information in symbolic form. Thus “9”’ is much
easier to understand or remember than ‘“1001’’. More convenient
representations have been devised, which improve the person-
machine interface.

2. Octal and Hexadecimal

“Octal” and ‘‘hexadecimal’”’ encode respectively three and four
binary bits into a unique symbol. In the octal system, any
combination of three binary bits is represented by a number be-
tween 0 and 7.

“Octal” is a format using three bits, where each combination of
three bits is represented by a symbol between 0 and 7:

33

PROGRAMMING THE 6502

binary | octal

000
001
010
011
100
101
110
111

OO WN-O

Fig. 1-7: Octal Symbols

For example, “00 100 100" binary is represented by:

y v v
0 4 4

or ‘044" in octal.

Another example: 11 111 111 is:
vy v Y
3 .17 7

or ‘377" in octal.
Conversely, the octal ‘211"’ represents:
010 001 001
or ““10001001” binary.

Octal has traditionally been used on older computers which were
employing various numbers of bits ranging from 8 to perhaps 64.
More recently, with the dominance of eight-bit microprocessors,
the eight-bit format has become the standard, and another more

practical representation is used. This is hexadecimal.

In the hexdecimal representation, a group of four bits is en-
coded as one hexadecimal digit. Hexadecimal digits are
represented by the symbols from 0 to 9, and by the letters A, B, C,
D, E, F. For example, ‘“0000” is represented by 0", ““0001" is
represented by ‘“1’’ and ‘“1111” is represented by the letter “F"

(see Fig. 1-8).

34

BASIC CONCEPTS

DECIMAL BINARY HEX OCTAL
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 8 10
9 1001 9 11

10 1010 A 12
1 101 B 13
12 1100 C 14
13 1101 D 15
14 1110 E 16
15 11 F 17

Fig. 1-8: Hexadecimal Codes

35

PROGRAMMING THE 6502

Example: 1010 0001 in binary is represented by

A 1 in hexadecimal.

Exercise 1.25: What is the hexadecimal representation of
*101010102”

Exercise 1.26: Conversely, what is the binary equivalent of “'“FA™
hexadecimal?

Exercise 1.27: What is the octal of *01000001"2

Hexadecimal offers the advantage of encoding eight bits into on-
ly two digits. This is easier to visualize or memorize and faster to
type into a computer than its binary equivalent. Therefore, on
most new microcomputers, hexadecimal is the preferred method of
representation for groups of bits.

Naturally, whenever the information present in the memory has
a meaning, such as representing text or numbers, hexadecimal is
not convenient for representing the meaning of this information
when it is brought out for use by humans.

Symbolic Representation

Symbolic representation refers to the external representation of
information in actual symbolic form. For example, decimal num-
bers are represented as decimal numbers, and not as sequences of
hexadecimal symbols or bits. Similarly, text.is represented as
such. Naturally, symbolic representation is most practical to the
user. It is used whenever an appropriate display device is
available, such as a CRT display or a printer. (A CRT display is a
television-type screen used to display text or graphics.) Unfortu-
nately, in smaller systems such as one-board microcomputers, it is
uneconomical to provide such displays, and the user is restricted
to hexadecimal communication with the computer.

Summary of External Representations

Symbolic representation of information is the most desirable
since it is the most natural for a human user. However, it requires
an expensive interface in the form of an alphanumeric keyboard,
plus a printer or a CRT display. For this reason, it may not be

36

BASIC CONCEPTS

available on the less expensive systems. An alternative type of rep-
resentation is then used, and in this case hexadecimal is the domi-

nant representation. Only in rare cases relating to fine de-bugging
at the hardware or the software level is the binary representation
used. Binary directly displays the contents of registers of memory
in binary format.

(The utility of a direct binary display on a front panel has always
been the subject of a heated emotional controversy, which will not
be debated here.)

We have seen how to represent information internally and exter-
nally. We will now examine the actual microprocessor which will
manipulate this information.

Additional Exercises

Exercise 1.28: What is the advantage of two’s complement over other
representations used to represent signed numbers?

Exercise 1.29: How would you represent ‘1024’ in direct binary? Signed
binary? Two’s complement?

Exercise 1.30: What is the V-bit? Should the programmer test it after an
addition or subtraction?

Exercise 1.31: Compute the two’s complement of ‘‘+ 16” “+177
((+18J’ (13 16’) € 1711 €€ 18!’

Exercise 1.32: Show the hexadecimal representation of the following

text, which has been stored internally in ASCII format, with no parity:
= “MESSAGE”’.

37

2
6502 HARDWARE ORGANIZATION

INTRODUCTION

In order to program at an elementary level, it is not necessary
to understand in detail the internal structure of the processor
that one is using. However, in order to do efficient programming,
such an understanding is required. The purpose of this chapter is
to present the basic hardware concepts necessary for understan-
ding the operation of the 6502 system. The complete microcompu-
ter system includes not only the microprocessor unit (here the
6502), but also other components. This chapter presents the 6502
proper, while the other devices (mainly input/output) will be pre-
sented in a separate chapter (Chapter 7).

We will review here the basic architecture of the microcomputer
system, then study more closely the internal organization of the
6502. We will examine, in particular, the various registers. We will
then study the program execution and sequencing mechansim.
From a hardware standpoint, this chapter is only a simplified
presentation. The reader interested in gaining detailed understanding
is referred to our book ref. C201 (‘‘Microprocessors,’’ by the same
author).

SYSTEM ARCHITECTURE

The architecture of the microcomputer system appears in Figure
2-1. The microprocessor unit (MPU), which will be a 6502 here,
appears on the left of the illustration. It implements the functions

38

6502 HARDWARE ORGANIZATION

of a central processing unit (CPU) within one chip: it in-
cludes an arithmetic-logical-unit (ALU), plus its internal registers,
and a control-unit (CU) in charge of sequencing the system.
Its operation will be explained in this chapter.

POWER
y 8-BIT DATA BUS
A
K >
N v
ﬂ @ voeus _____
PRO-
ROM | |
MPU (PRO- RAM GRAM- lyvosus ! 170 1
Gram)| | (PATA) MABLE C:$ 'DEVICES!
[7{e] | 1
l 7S 4 7S CONTROL & ===
clock :)
S 16-BIT ADDRESS BUS
)

Vv

CONTROL LINES

Fig. 2-1: Architecture of a Standard Microprocessor System

The MPU creates three buses: an 8-bit bi-directional data-bus,
which appears at the top of the illustration, a 16-bit mono-
directional address-bus and a control-bus which appears at the
bottom of the illustration. Let us describe the function of each of
the buses.

The data-bus carries data being exchanged by the various
elements of the system. Typically, it will carry data from the
memory to the MPU, from the MPU to the memory, or from
the MPU to an input/ouput chip. (An input/output chip is a com-
ponent in charge of communicating with an external device.)

The address-bus carries an address generated by the MPU,
which will select one internal register within one of the chips
attached to the system. This address specifies the source, or the
destination, of the data which will transit along the data-bus.

The control-bus carries the various synchronization signals re-
quired by the system.

39

PROGRAMMING THE 6502

Having described the purpose of the busses, let us now connect the ad-
ditional components required by a complete system.

Every MPU requires a precise timing reference, which is supplied by a
clock and a crystal. In most ‘“older’’ microprocessors, the clock-oscilla-
tor is external to the MPU and requires an extra chip. In most recent mi-
croprocessors, the clock oscillator is usually incorporated within the
MPU. The quartz crystal, however, because of its bulk is always external
to the system. The crystal and the clock appear on the left of the MPU
box in the illustration.

Let us now turn our attention to the other elements of the system. Go-
ing from left to right on the illustration, we distinguish:

The ROM is the read-only-memory and contains the program for the
system. The advantage of the ROM is that its contents are permanent
and do not disappear whenever the system is turned off. The ROM,
therefore, always contains a bootstrap or a monitor program (their func-
tion will be explained later) to permit initial system operation. In a pro-
cess-control environment, nearly all the programs will reside in ROM as
they will probably never be changed. In such case, the industrial user has
to protect the system against power failures: programs may not be vola-
tile. They must be in ROM.

However, in a hobbyist environment, or in a program-development
environment (when the programmer tests the program), most of the pro-
grams will reside in RAM so that they can easily be changed. Later, they
may remain in RAM, or be transferred into ROM, if desired. RAM,
however, is volatile. Its contents are lost when power is turned off.

The RAM (random-access-memory) is the read/write memory for the
system. In the case of a control system, the amount of RAM will typi-
cally be small (for data only). On the other hand, in a program-develop-
ment environment, the amount of RAM will be large, as it will contain
programs plus development software. All RAM contents must be loaded
prior to use from an external device.

Finally, the system will contain one or more interface chips so that it
may communicate with the external world. The most frequently used in-
terface chip is the ““PIO’’ or parallel-input-output chip. It is the one
shown in the illustration. This PIO, like all other chips in the system,
connects to all three busses and provides at least two 16-bit ports for
communication with the outside world. For more details on how an ac-
tual PIO works, refer to book C201 or else, for specifics of the 6502 sys-
tem, refer to Chapter 7 (Input/Output devices).

6502 HARDWARE ORGANIZATION

All these chips are connected to all three busses, including the
control bus. However, to clarify the illustration, the connections be-
tween the control bus and these various chips are not shown on the
diagram.

The functional modules which have been described need not
necessarily reside on a single LSI chip. In fact, we will use combina-
tion chips which include both a PIO and a limited amount of ROM
or RAM. For more details refer to Chapter 7.

Still more components will be required to build a real system. In
particular, the busses usually need to be buffered. Also decoding
logic may be used for the memory RAM chips, and finally some
signals may need to be amplified by drivers. These auxiliary circuits
will not be described here as they are not relevant to programming.
The reader interested in specific assembly and interfacing tech-
niques is referred to book C207 ‘“Microprocessor Interfacing Tech-
niques.”’

INTERNAL ORGANIZATION OF THE 6502

A simplified diagram of the internal organization of the 6502 ap-
pears in Figure 2-2.

The arithmetic logical unit (ALU) appears on the right of the il-
lustration. It can easily be recognized by its characteristic “V”’
shape. The function of the ALU is to perform arithmetic and logical
operations on the data which is fed to it via its two input ports. The
two input ports of the ALU are respectively the ‘‘left input” and the
“right input.” They correspond to the top extremities of the “V”
shape. After performing an arithmetic operation such as an addition
or subtraction, the ALU outputs its contents at the bottom of the il-
lustration,

The ALU is equipped with a special register, the accumulator (A).
The accumulator is on the left input. The ALU will automatically
reference this accumulator as one of the inputs. (However, a bypass
also exists.) This is a classic accumulator-based design. In
arithmetic and logical operations, one of the operands will be the ac-
cumulator, and the other will typically be a memory location.
The result will be deposited in the accumulator. Referencing the ac-
cumulator as both the source and the destination for data is the
reason for its name: it accumulates results. The advantage of this
accumulator-based approach is the possibility of using very short
instructions-just a single byte (8 bits) to specify the “opcode” i.e.

41

PROGRAMMING THE 6502

> DATA BUS
H ﬂ H ~
v x s [] [r] [4]
Nttt ———
INDEX REGISTERS
S: STACK POINTER]
PC: PROGRAM
COUNTER > § ADDRESS LOW
T e
A: ACCUMULATOR —y
P = PROCESSOR L_
STATUS
o
MUX = MULTIPLEXER
ALU = ARITHMETIC- N S soosss o
LOGIC UNIT AB-15

Fig. 2-2: Internal Organization of the 6502

the nature of the operation performed. If the operand had to be
fetched from one of the other registers (other than an accumulator),
it would be necessary to use a number of extra bits to designate this
register within the instruction. The accumulator architecture there-
fore, results in improved execution speed. The disadvantage is that
the accumulator must always be loaded with the desired data prior
to its use. This may result in some inefficiency.

Let us go back to the illustration. By the side of the ALU, to its
left, appears a special 8-bit register, the processor status-flags (P).
This register contains 8 status bits. Each of these bits, physically
implemented by a flip-flop inside the register is used to denote a
special condition. The function of the various status bits will be ex-
plained progressively during the programming examples presented
in the next chapter, and will be described completely in Chapter
4, which presents the complete instruction set. As an example,
three such status flags are the N, Z, and C bits.

42

6502 HARDWARE ORGANIZATION

N stands for “negative.” It is bit 7 (i.e., the left-most) of regis-
ter P. Whenever this bit is one it indicates that the result of the
operation through the ALU is negative.

Bit Z stands for zero. Whenever this bit (bit position 1) is a one,
it denotes that a zero result was obtained.

Bit C, in the right-most position (position 0), is a carry bit.
Whenever two 8-bit numbers are added and the result cannot be
contained in 8 bits, bit C is the ninth bit of the result. The carry is
used extensively during arithmetic operations.

These status bits are automatically set by the various instruc-
tions. A complete list of the instructions and the way in which
they affect the status bits of the system appears in Appendix A, as
well as in Chapter 4. These bits will be used by the programmer to
test various special or exceptional conditions, or else to test
quickly for some erroneous result. As an example, testing bit Z
may be accomplished with special instructions and will im-
mediately tell whether the result of a previous operéltion was 0
or not. All decisions in an assembly language program, i.e. in all
the programs that will be developed in this book, will be based on
the testing of bits. These bits will be either bits that will be read
from the outside world, or else the status bits of the ALU. It is
therefore very important to understand the function and use of all
status bits in the system. The ALU here is equipped with a status
register containing these bits. All other input/output chips in the
system will also be equipped with status bits. These will be
studied in Chapter 7.

Let us now move leftwards of the ALU on illustration 2-2. The
horizontal rectangles represent the internal registers of the 6502.

PC is the program counter. 1t is a 16-bit register and is physi-
cally implemented as two 8-bit registers: PCL and PCH. PCL
stands for the low half of the program counter, i.e., bits 0 through
7. PCH stands for the high part of the program counter, i.e., bits 8
through 15. The program counter is a 16-bit register which con-
tains the address of the next instruction to be executed. Every
computer is equipped with a program counter so that it knows
which instruction to execute next. Let us review briefly the mem-
ory access mechanism in order to illustrate the role of the pro-
gram counter.

43

PROGRAMMING THE 6502

MPU ROM

PC

Z

PC:

NN

/ ADDRESS BUS
puzzZZ2222222772223

Fig. 2-3: Fetching an Instruction from the Memory

THE INSTRUCTION EXECUTION CYCLE

Let us refer now to Figure 2-3. The microprocessor unit appears
on the left, and the memory appears on the right. The memory
chip may be a ROM or a RAM, or any other chip which happens to
contain memory. The memory is used to store instructions and
data. Here, we will fetch one instruction from the memory to
illustrate the role of the program counter. We assume that the
program counter has valid contents. It now holds a 16-bit address
which is the address of the next instruction to fetch in the mem-
ory. Every processor proceeds in three cycles:

1 — Fetch the next instruction
2 — Decode the instruction
3 — Execute the instruction

Fetch

Let us now follow the sequence. In the first cycle, the contents of
the program counter are deposited on the address bus and gated
to the memory (on the address bus). Simultaneously, a read signal
may be issued on the control bus of the system, if required. The
memory will receive the address. This address is used to specify
one location within the memory. Upon receiving the read signal,

44

6502 HARDWARE ORGANIZATION

the memory will decode the address it has received, through
internal decoders, and will select the location specified by the
address. A few hundred nanoseconds later, the memory will de-
posit the 8-bit data corresponding to the specified address on its
data-bus. This 8-bit word is the instruction that we want to fetch.
In our illustration, this instruction will be deposited on top of the
data bus.

Let us briefly summarize the sequencing. The contents of the
program counter are output on the address bus. A read signal is
generated. The memory cycles. Perhaps 300 nanoseconds later,
the instruction at the specified address is deposited on the data-
bus. The microprocessor then reads the data-bus and deposits its

contents into a specialized internal register, the IR register. The
IR register is the instruction-register. It is 8 bits wide and is used

to contain the instruction just fetched from the memory. The fetch
cycle is now completed. The 8 bits of the instruction are now physi-
cally in the special internal register of the 6502, the IR register.
This IR register appears on the left of Figure 2-4.

Decoding and Execution

Once the instruction is contained in IR, the control-unit of the
microprocessor will decode the contents and will be able to gen-
erate the correct sequence of internal and external signals for the
execution of the specified instruction. There is, therefore, a short
decoding delay followed by an execution phase, the length of
which depends on the nature of the instruction specified. Some
instructions will execute entirely within the MPU. Other instruc-
tions will fetch or deposit data from or into the memory. This is
why the various instructions of the 6502 require various lengths
of time to execute. This duration is expressed as a number of
(clock) cycles. Refer to the Appendix for the number of cycles re-
quired by each instruction. A typical 6502 uses one-megahertz
clock. The length of each cycle is therefore 1 microsecond. Since
various clock rates may be used with different components, speed
of execution is normally expressed in number of cycles rather
than in number of nanoseconds.

In the case of the 6502, its clock is internal, represented by the in-
ternal oscillator (see Fig. 2-1).

45

PROGRAMMING THE 6502

Fetching the Next Instruction

We have now described how, using the program counter, an
instruction can be fetched from the memory. During the execution
of a program, instructions are fetched in sequence from the mem-
ory. An automatic mechanism must therefore be provided to fetch
instructions in sequence. This task is performed by a simple in-
crementor attached to the program counter. This is illustrated in
Figure 2-4. Every time that the contents of the program counter
(at the bottom of the illustration) are placed on the address-bus,
its contents will be incremented and written back into the pro-
gram counter. As an example, if the program counter did contain
the value 0, the value 0 would be output in the address bus. Then
the contents of the program counter would be incremented and
the value 1 would be written back into the program counter. In
this way, the next time that the program counter. is used, it is the
instruction at address 1 that will be fetched. We have just imple-
mented an automatic mechanism for sequencing instructions.

MEMORY
ATA BUS
MmPU o 7 l 0
: |
7) Ly
R INST \ :
"
! ¥
'y
:)
DECODER N [}
v ' INST 2304
SIGNALS READ
15 PC 1]
MEMORY
2304
PROPER
ADDRESS BUS 1]
> ADDRESS DECODER

Fig. 2-4: Automatic Sequencing

6502 HARDWARE ORGANIZATION

It must be stressed that the above descriptions are simplified.
In reality, some instructions may be 2- or even 3-bytes long so that
successive bytes will be fetched in this manner from the memory.
However, the mechanism is identical. The program counter is
used to fetch successive bytes of an instruction, as well as to fetch
successive instructions themselves. The program counter, to-
gether with its incrementer, provides an automatic mechanism
for pointing to successive memory locations.

Other 6502 Registers

One last area on Figure 2-2 has not yet been explained. It is the
set of three registers labeled X, Y and S. Registers X and Y are
called index registers. They are 8 bits wide. They may be used to
contain data on which the program will operate. However, they
normally are used as index registers.

The role of index registers will be described in Chapter 5 on
addressing techniques. Briefly, the contents of these two index
registers may be added in several ways to any specified address
within the system to provide an automatic offset. This is an im-
portant facility for retrieving data efficiently when it is stored in
tables. These two registers are not completely symmetrical, and
their roles will be differentiated in the chapter on addressing
techniques. "

The stack register S is used to contain a pointer to the top of the
stack area within the memory.

Let us now introduce the formal concept of a stack.

THE STACK

A stack is formally called an LIFO structure (last-in, first-out). A
stack is a set of registers, or memory locations, allocated to this
data structure. The essential characteristic of this structure is
that it is a chronological structure. The first element introduced
into the stack is always at the bottom of the stack. The element
most recently deposited in the stack is on the top of the stack. The
analogy can be drawn to a stack of plates on a restaurant
counter. There is a hole in the counter with a spring in the bottom.
Plates are piled up in the hole. With this organization, it is
guaranteed that the plate which has been put first in the stack
(the oldest) is always at the bottom. The one that has been placed

47

PROGRAMMING THE 6502

most recently on the stack is the one which is on top of it. This
example also illustrates another characteristic of the stack. In
normal use, a stack is only accessible via two instructions: “push”
and ‘““pop’’ (or ‘““pull’’). The push operation results in depositing one
element on top of the stack. The pull operation consists of remov-
ing one element from the stack. In practice, in the case of a mic-
roprocessor, it is the accumulator that will be deposited on top of
the stack. The pop will result in a transfer of the top element of
the stack into the accumulator. Other specialized instructions
may exist to transfer the top of the stack between other spe-
cialized registers, such as the status register.

The availability of a stack is required to implement three pro-
gramming facilities within the computer system: subroutines, in-
terrupts, and temporary data storage. The role of the stack during
subroutines will be explained in Chapter 3 (Basic Programming
Techniques). The role of the stack during interrupts will be ex-
plained in Chapter 6 (Input/Output Techniques). Finally, the role
of the stack to save data at high speed will be explained during
specific application programs.

We will simply assume at this point that the stack is-a required
facility in every computer system. A stack may be implemented
in two ways:

1. A fixed number of registers may be provided within the mi-
croprocessor itself. This is a “hardware stack.” It has the advan-
tage of high speed. However, it has the disadvantage of a limited
number of registers.

2. Most general-purpose microprocessors choose another ap-
proach, the software stack, in order not to restrict the stack to
a very small number of registers. This is the approach chosen in
the 6502. In the software approach, a dedicated register within
the microprocessor, here register S, stores the stack pointer, i.e.,
the address of the top element of the stack (or more precisely, the
address of the top element of the stack plus one). The stack is then
implemented as an area of memory. The stack pointer will therefore
require 16 bits to point anywhere in the memory.

However, in the case of the 6502, the stack pointer is restricted
to 8 bits. It includes a 9th bit, in the left-most position, always set
to 1. In other words, the area allocated to the stack in the case of
the 6502 ranges from address 256 to address 511. In binary, this is
“100000000” to “111111111” The stack always starts at address
111111111 and may have up to 255 words. This may be viewed

48

6502 HARDWARE ORGANIZATION |

as a limitation of the 6502 and will be discussed later in this book.
In the 6502, the stack is at the high address, and grows
‘“‘backwards’’; the stack pointer is decremented by a PUSH.

In order to use the stack, the programmer will simply initialize
the S register. The rest is automatic.

The stack is said to reside in page 1 of the memory. Let us now
introduce the paging concept.

0

8[ADDRESS

SP

_MICROPROCESSOR 7___MEMORY 0
REGISTER |
!
7 0 |
DATA L pusH
| —
|
l
|

YA
I/ 9077099000959077
Vi zzzzzzzza
TII90000000000000005%.
iz

N

—_——— e ———y

BASE

Fig. 2-5: The 2 Stack Manipulation Instructions

THE PAGING CONCEPT

The 6502 microprocessor is equipped with a 16-bit address-bus.
16 binary bits may be used to create up to 21¢ = 64K combinations
(1K equals 1,024). Because of addressing features of the 6502
which will be presented in Chapter 5, it is convenient to partition
the memory into logical pages. A page is simply a block of 256
words. Thus, memory locations 0 to 255 are page 0 of the memory.
It will be used for ‘“‘page zero’’ addressing.Page 1 of the memory
includes memory locations 256 through 511. We have just estab-
lished that page 1 is normally reserved for the stack area. All
other pages in the system are unconstrained by the design and
may be used in any way. In the case of the 6502, it is important to
keep in mind the page organization of the memory. Whenever a
page boundary has to be crossed, it will often introduce an extra
cycle delay in the execution of an instruction. 4

PROGRAMMING THE 6502

ADDRESS MEMORY
15 8 7 0
0
PAGE # LOCATION PAGEO
255
256
PAGE 1
51
512
LOCATION
WITHIN
PAGE
. WORD
64K

Fig. 2-6: The Paging Concept

THE 6502 CHIP

To complete our description of the diagram, the data bus at the up-
per part of Figure 2-2 represents the external data bus. It will be used to
communicate with the external devices, and the memory in particular.
AO0-7 and A8-15 represent respectively the low-order and the high-order
part of the address-bus created by the 6502.

For completeness, we present here the actual pin-out of the
6502 microprocessor. You need not read it to understand the rest
of this book. However, if you intend to connect devices to a system,
this description will be valuable.

The actual pin-out of the 6502 appears in Figure 2-7. The data
bus is labeled DB0-7 and is easily recognizable on the right of the
illustration. The address bus is labeled A0O-11 and A12-15. It comes

50

6502 HARDWARE ORGANIZATION

(Power Ground) V§S§ —— 1 40 [=— RES (Reset)

(Ready) RDY —a{ 2 39 [—= 2 (Clock)

(Clock) P -—1 3 B8 —

(Interrupt Request) RQ —= 4 37 |=— ¢o (Clock)
— 5 36 = —

(Non-Maskable N o 35—

Interrupt)

(Synchronize) SYNC 7 34— R/W (Read/Write)

(Power: +5V) vcC — 8

26-33 <:> 0Bf7 (Dota Bus)

| Memory Bus
Memory Bus [¢ y Bus
(u,.e,?;o n)A¢‘”< 9-20 22:25 :> A12-15 |ines 12 10 15)

21 VSS (Power Ground)

Fig. 2-7: 6502 Pinout

from pins 9 to 20 on the left of the chip, and pins 22 to 25 on its
right.
The rest of the signals are power and control signals.

The control signals

—R/W: the READ/WRITE line controls the direction of data
transfers on the data-bus.

—IRQ and NMI are ‘“‘Interrupt Request’’ and ‘‘Non-Maskable
Interrupt’’. They are two interrupt lines and will be used in
Chapter 7.

—SYNC is a signal which indicates an opcode fetch to the exter-
nal world.

—RDY is normally used to synchronize with a slow memory: it
will stop the processor.

—SO0 sets the overflow flag. It is normally not used.

—+py, 1 and P, are clock signals.

—RES is RESET, used to initialize.

—Vgs and V¢ are for power (5V).

51

PROGRAMMING THE 6502

HARDWARE SUMMARY

This completes our hardware description of the internal organi-
zation of the 6502. The exact internal bussing structure of the
6502 is not important at this point. However, the exact role of
each of the registers is important and should be fully understood
before the reader proceeds. If you are familiar with the concepts
that have been presented, read on. If you do not feel sure about
some of them, it is suggested that you read again the relevant
sections of this chapter, as they will be needed in the next chap-
ters. It is suggested that you look again at Figure 2-2 and make
sure that you understand the function of every register in the
illustration.

52

3

BASIC PROGRAMMING
TECHNIQUES

INTRODUCTION

The purpose of this chapter is to present all the basic tech-
niques necessary to write a program using the 6502. This chapter
will introduce additional concepts such as register management,
loops, and subroutines. It will focus on programming techniques
using only the internal 6502 resources, i.e., the registers. Actual
programs will be developed such as arithmetic programs. These
programs will serve to illustrate the various concepts presented
so far and will use actual instructions. Thus, it will be seen how
instructions may be used to manipulate the information between
the memory and the MPU, as well as manipulate information
within the MPU itself. The next chapter will then discuss in com-
plete detail the instructions available on the 6502. Chapter 6 will
present the techniques available to manipulate information out-
side the 6502: the input/output techniques.

In this chapter, we will essentially learn by “‘doing.” By examining
programs of increasing complexity, we will learn the role of the
various instructions and of the registers and will apply the concepts
developed so far. However, one important concept will not be
presented here; it is the concept of addressing techniques. Because of
its apparent complexity, it will be presented separately in chapter 5.

Let us immediately start writing some programs for the 6502.
We will start with arithmetic programs.

53

PROGRAMMING THE 6502

ARITHMETIC PROGRAMS

Arithmetic programs cover addition, subtraction, multiplication,
and division. The programs that will be presented here will operate on
integers. These integers may be positive binary integers or may be ex-
pressed in two’s complement notation, in which case the left-most bit
is the sign bit (See Chapter 1 for a reminder of the two’s complement

notation.)

8-Bit Addition

We will add two 8-bit operands called OP1 and OP2, re-
spectively stored at memory address ADR1 and ADR2. The sum
will be called RES and will be stored at memory address ADR3.
This is illustrated in Figure 3-1. The program which will perform

this addition is the following:

LDA ADR1 LOAD OP1 IN A

ADC ADR2 ADD OP2 TO OP1

STA ADR3 SAVE RES AT ADR3

' MEMORY
NSNS

ADR] ——— | OP1 (FIRST OPERAND)
ADR2 ————= OP2 (SECOND OPERAND)
ADR3 —————— | RES (RESULT)
ADDRESSES A AN

54

Fig. 3-1: 8-Bit Addition Res=OP1 + OP2

BASIC PROGRAMMING TECHNIQUES

This is a three-instruction program. Each line is one instruc-
tion, in symbolic form. Each such instruction will be translated by
the assembler program into 1, 2, or 3 binary bytes. We will not
concern ourselves with the translation here and only look at the
symbolic representation. The first line specifies an LDA instruc-
tion. LDA means ‘‘load the accumulator A from the address which
follows.”’ '

The address specified on the first line is ADR1. ADR1 is a sym-
bolic representation for an actual 16-bit address. Somewhere else
in the program, the ADRI symbol will be defined. It could be, for
example, address 100.

The instruction LDA specifies “load accumulator A” (inside the
6502) from memory location 100. This will result in a read opera-
tion from address 100, the contents of which will be transmitted
along the data-bus and deposited inside the accumulator. You
will recall that arithmetic and logical operations operate on the ac-
cumulator as one of the source operands. (Refer to the previous
chapter for more details.) Since we wish to add the two values
OP1 and OP2 together, we first load OP1 into the accumulator.
Then we will be able to add the contents of the accumulator (OP1)
to OP2.

The right-most field of this instruction is called a comment field.
It is ignored by the processor, but it is provided for program
readability. In order to understand what the program does, it is of
paramount importance to use good comments.

This is called documenting a program. Here the comment is self
explanatory: the value of OP1, which is located at address ADR1,
is being loaded in accumulator A.

The result of this first instruction is illustrated by Figure 3-2.

6502 MEMORY

%/////////////////.

QO

o

_(ADR1)

ADDRESSBUS

Fig. 3-2: LDA ADR1: OP1 is Loaded from Memory

55

PROGRAMMING THE 6502

The second instruction of our program is:
ADC ADR2

It specifies ‘‘add the contents of memory location ADR2 to the
accumulator.’’ Referring to Figure 3-1, the contents of memory
location ADR2 are OP2, our second operand. The actual contents of
the accumulator now OPI1, our first operand.. As aresult of the
execution of the second instruction, OP2 will be fetched from the
memory and added to OP1. The sum will be deposited in the
accumulator. The reader will remember that the results of an
arithmetical operation, in the case of the 6502, are deposited back
into the accumulator. In other microprocessors, it may be possible
to deposit these results in other registers or back into the memory.

The sum of OP1 and OP2 is now in the accumulator. We have
just to transfer the contents of the accumulator into memory loca-
tion ADR3 in order to store the results at the specified location.
Again, the right-most field of the second instruction is simply a
comment field which explains the role of the instruction (add OP2
to A).”

DATA BUS
272777777272

OPl +
OP2.

2
I

S s

T,

(ADR2)

ADDRESS BUS

Fig. 3-3: ADC ADR2

The effect of the second instruction is illustrated by Figure 3-3.

It can be verified in Figure 3-3 that, initially the accumulator
contained OP1. After the addition, a new result has been written
into the accumulator. It is OP1 + OP2. The contents of any regis-
ter within the system, as well as any memory location, remain the
same when a read operation is performed. In other words, reading
the contents of a register or a memory location does not change its
contents. It is only, and exclusively, a write operation that will

56

BASIC PROGRAMMING TECHNIQUES

change the contents of a register. In this example, the contents of
memory locations ADR1 and ADR2 are unchanged. However,
after the second instruction of this program, the contents of the
accumulator have been modified because the output of the ALU
has been written into the accumulator. Its previous contents are
then lost.

Let us now save this result at address ADR3 and we will have
completed our simple addition.

The third instruction specifies: STA ADR3. This means ‘‘Store
the contents of accumulator A at the address ADR3.” This is self-
explanatory and is illustrated in Figure 3-4.

st ,.,WI:I’

DATA BUS

ADR:

o

(ADR3) :

ADDRESS BUS

Fig. 3-4: STA ADR3 (Save Accumulator in Memory)

6502 Peculiarities

The above three-instruction program would indeed by the com-
plete program for most microprocessors. However, two
peculiarities of the 6502 exist, which will normally require two
additional instructions.

First, the ADC instruction really means “add with carry,’
rather than “add.” The difference is that a regular add instruction
adds two numbers together. An add-with-carry adds two numbers
together plus the value of the carry bit. Since we are adding here
8-bit numbers, no carry should be used, and at the time we start
the addition we do not necessarily know the condition of the carry
bit (it may have been set by a previous instruction), so we must clear
it, i.e., set it to zero. This will be accomplished by the CLC instruc-
tion: “‘clear carry.”

57

PROGRAMMING THE 6502

Unfortunately, the 6502 does not have both types of addition
operations. It has only an ADC operation. As a result, for single
8-bit additions, a necessary precaution is to always clear the carry
bit. This is no significant disadvantage but should not be forgot-
ten.

The second peculiarity of the 6502 lies with the fact that it is
equipped with powerful decimal instructions, which will be used
in the next section on BCD arithmetic. The 6502 always operates
in one of two modes: binary or decimal. The state it is in is con-
ditioned by a status bit, the “D” bit (of register P). Since we are
operating in binary mode in this example, it is necessary to make
sure that the D bit is correctly set. This will be done by a CLD
instruction, which will clear the D bit. Naturally, if all arithmetic
within the system is done in binary, the D bit will be cleared once
and for all at the beginning of the program, and it will not be
necessary to set it every time. Therefore, this instruction may, in
fact, be omitted in most programs. However, the reader, who will
practice these exercises on a computer, may go back and forth
between BCD and binary exercises, and this extra instruction has
been included here as it must appear at least once before any
binary addition is performed.

To summarize: our complete, and safe, 8-bit program is now:

CLC CLEAR CARRY BIT
CLD CLEAR DECIMAL BIT
LDA ADR1 LOAD OP11IN A

ADC ADR2 ADD OP2 TO OP1
STA ADR3 SAVE RES AT ADR3

Actual physical addresses may be used instead of ADR1, ADR2,
and ADRS3. If one wishes to keep symbolic addresses, it will be
necessary to use so-called “pseudo-instructions” which specify the
value of these symbolic addresses so that the assembly program
may, during translation, substitute the actual physical addresses.
Such pseudo-instructions would be, for example:

ADR1 = $100
ADR2 = $120
ADR3 = $200

Exercise 3.1: Now close this book. Refer only to the list of instruc-
tions at the end of the book. Write a program which will add two

58

BASIC PROGRAMMING TECHNIQUES

numbers stored at memory locations LOC1 and LOC2. Deposit the
results at memory location LOC3. Then, compare your program to
the one above.

16-Bit Addition

An 8-bit addition will only allow the addition of 8-bit numbers, i.e.,
numbers between 0 and 255, if absolute binary is used. For most prac-
tical applications it is necessary to use multipleprecision and to add
numbers having 16 bits or more. We will present here examples of
arithmetic on 16-bit numbers. They can be readily extended to 24,
32 bits,or more. (One always uses multiples of 8 bits.) We will assume
that the first operand is stored at memory locations ADR1 and
ADRI1 - 1. Since OP1 is a 16-bit number this-time, it will require two
8-bit memory locations. Similarly, OP2 will be stored at ADR2 and
ADR2- 1. The result is to be deposited at memory addresses ADR3
and ADR3 - 1. This is illustrated in Figure 3-5.

MEMORY

ADR1 -1 (OPHH
ADR1 (OP1)L

ADR2—1 (OPR2)H
ADR2 (OPR2)L
ADR3—1 (RES)H
ADR3 (RES)L

Fig. 3-5: 16 Bit Addition: The Operands

59

PROGRAMMING THE 6502

The logic of this program is exactly analogous to the previous
one. First, the lower half of the two operands will be added, since
the microprocessor can only add on 8 bits at a time. Any carry
generated by the addition of these low order bytes will be au-
tomatically stored in the internal carry bit (“C”). Then, the high
order half of the two operands will be added together along with
any carry, and the result will be saved in the memory. The pro-
gram appears below:

CLC

CLD

LDA ADR1 LOW HALF OF OP1

ADC ADR2 (OP1 + OP2) LOW

STA ADR3 SAVE LOW HALF OF RES
LDA ADR1-1 HIGH HALF OF OP1

ADC ADR2-1 (OP1 + OP2) HIGH + CARRY
STA ADR3-1 SAVE HIGH HALF OF RES

The first two instructions of this program are used to be safe: CLC,
CLD. Their roles have been explained in the previous section. Let us
examine the program. The next three instructions are essentially iden-
tical to the ones for the 8-bit addition. They result in adding the least
significant half (bits 0 through 7) of OP1 and OP2. The sum, called
RES, is stored at memory location ADR3.

Automatically, whenever an addition is performed, any result-
ing carry is saved in the carry bit of the flags register (register P).
If the two 8-bit numbers do not generate any carry, the value of
the carry bit will be zero. If the two numbers do generate a carry,
then the C bit will be equal to 1.

The next three instructions of the program are also essentially
identical to the previous 8-bit addition program. They add to-
gether the most significant half (bits 8 through 15) of OP1 and
OP2, plus any carry, and store the results at address ADR3-1.
After this program has been executed, the 16-bit result is stored
at memory locations ADR3 and ADR3-1.

It is assumed here that no carry will result from this 16-bit
addition. It is assumed that the result is, indeed, a 16-bit number.
If the programmer suspects for any reason that the result might
have 17 bits, then additional instructions should be inserted that
would test the carry bit after this addition.

60

BASIC PROGRAMMING TECHNIQUES

The location of the operands in the memory is illustrated in Fig-
ure 3-5.)

Note that we have assumed here that the high part of the operand
is stored “‘on top of”’ the lower part, i.e., at the lower memory ad-
dress. This need not necessarily be the case. In fact, addresses
are stored by the 6502 in the reverse manner: the low part is first
saved in the memory, and the high part is saved in the next
memory location. In order to use a common convention for both
addresses and data, it is recommended that data also be kept with
the low part on top of the high part. This is illustrated in Figure
3-6A.

EMORY

ADR1 ©
ADRI + 1 (OPRIH
ADR2 (OPR2)L

ADR2+1 (OPR2)H

ADR3 (RES)L

ADR3+1

Fig. 3-6A: Storing Operands in Reverse Order

Exercise 3.2: Rewrite the 16-bit addition program above with the mem-
ory layout indicated in Figure 3-6A.

Exercise 3.3: Assume now that ADRI does not point to the lower half of
OPRI (see Figure 3-6A), but points to the higher part of OPRI. This is
illustrated in Figure 3-6B. Again, write the corresponding program.

61

PROGRAMMING THE 6502

MEMORY

ADRI-1 (OPRI L
ADRI (OPRIH

ADR2-1 (oPR2)L
ADR2 (OPR2)H

ADR31 (RESIL
ADR3 (RES)H

Fig. 3-6B: Pointing to the High Byte

It is the programmer, i.e., you, who must decide how to store 16-bit
numbers (low part or high part first) and also whether your address
references point to the lower or to the higher half of such numbers.
This is the first of many choices which you will learn to make when
designing algorithms or data structures.

We have now learned to perform a binary addition. Let us turn
to the subtraction.

Subtracting 16-Bit Numbers

Doing an 8-bit subtract would be too simple. Let us keep it as an ex-
ercise and directly perform a 16-bit subtract. As usual, our two
numbers, OPR1 and OPR2, are stored at addresses ADR1 and ADR2.
The memory layout will be assumed to be that of Figure 3-6A. In order
to subtract, we will use a subtact operation (SBC) instead of an add
operation (ADC). The only other change, when comparing it to the
addition, is that we will use an SEC instruction at the beginning of the

62

BASIC PROGRAMMING TECHNIQUES

program i_nstead of a CLC. SEC means ‘‘set carry to 1.”” This in-
dicates a ‘‘no-borrow’’ condition. The rest of the program is identical
to the one for addition. The program appears below:

CLD

SEC SET CARRY TO 1
LDA ADR1 (OPRI) L INTO A
SBC ADR2 (OPR1) L -(OPR2)L
STA ADR3 STORE (RESULT)L
LDA ADRI +1 (OPR1) H INTO A
SBC ADR2 + 1 (OPR1) H -(OPR2)H
STA ADR3 + 1 STORE (RESULDH

Exercise 3.4: Write the subtraction program for 8-bit operands.

It must be remembered that in the case of two’s complement
arithmetic, the final value of the carry flag has no meaning. If an
overflow condition has occurred as a result of the subtraction,
then the overflow bit (bit V) of the flags register will have been
set. It can then be tested.

The examples just presented are simple binary additions. How-
ever, another type of addition may be necessary; it is the BCD
addition.

BCD Arithmetic
8-Bit BCD Addition

‘The concept of BCD arithmetic has been presented in Chapter 1.
It is used essentially for business applications where it is impera-
tive to retain every significant digit in a result. In the BCD nota-
tion, a 4-bit nibble is used to store one decimal digit (0 through 9).
As a result, every 8-bit byte may store two BCD digits. (This is
called packed BCD.) Let us now add two bytes containing two
BCD digits each.

In order to identify the problems, let us try some numeric
examples first.

Let us add “01” and “02”:

“01” is represented by 0000 0001.

63

PROGRAMMING THE 6502

“02” is represented by 0000 0010.
The result is 0000 0011.

This is the BCD representation for “03”. (If you feel unsure of the
BCD equivalent, refer to the conversion table at the end of the
book.) Everything worked very simply in this case. Let us now try
another example.

08’ is represented‘by 0000 1000.
““03” is represented by 0000 0011.

Exercise 3.5: Compute the sum of the two numbers above in the
BCD representation. What do you obtain? (answer follows)

If you obtain 0000 1011, you have computed the binary sum of
“8” and “3”. You have indeed obtained “11” in binary. Unfortu-
nately, “1011” is an illegal code in BCD. You should obtain the
BCD representation of “11”, i.e., “0001 0001”!

The problem stems from the fact that the BCD representation
uses only the first ten combinations of 4 digits in order to encode
the decimal symbols “0” through “9”. The remaining six possible
combinations of 4 digits are unused, and illegal “1011” is one such
combination. In other words, whenever the sum of two binary
digits is greater than “9”, then one must add “6” to the result in
order to skip over the unused 6 codes. Add the binary representa-
tion for “6” to “1011”: ‘

1011 (illegal binary result)
+ 0110 (+6)

The result is: 0001 0001.

This is, indeed, ‘“11”" in the BCD notation! We now have the
correct result.

This example illustrates one of the basic difficulties of the BCD
mode. One must compensate for the six missing codes. On most
microprocessors, a special instruction, called ‘‘decimal adjust,”
must be used to adjust the result of the binary addition (add 6 if
result greater than 9). In the case of the 6502, the ADC instruc-
tion does it automatically. This is a clear advantage of the 6502
when doing BCD arithmetic.

The next problem is illustrated by the same example. In our
example, the carry will be generated from the lower BCD digit

64

BASIC PROGRAMMING TECHNIQUES

(the right-most one) into the left-most one. This internal carry
must be taken into account and added to the second BCD digit.
The addition instruction for the 6502 takes care of this automati-
cally. However, it is often convenient to detect this internal carry
from bit 3 to bit 4 (the *half-carry”). No flag is provided in the
6502.

Finally, just as in the case of the binary addition, the usual
SED and CLC instructions must be used prior to executing the
BCD addition proper. As an example, a program to add the BCD
numbers “11” and “22” appears below:

CLC CLEAR CARRY

SED SET DECIMAL MODE
LDA #$11 LITERAL BCD “11”
ADC #$22 LITERAL BCD ¢22”
STA ADR

In this program, we are using two new symbols: “#” and “$”.
The “#” symbol denotes that a “literal” (or constant) follows. The
“$” sign within the operand field of the instruction specifies that

MEMORY

LDA

(RESULT) (ADR)

Fig. 3-7: Storing BCD Digits

65

PROGRAMMING THE 6502

the data which follows is expressed in hexadecimal notation. The
hexadecimal and the BCD representations for digits “0” through
“9” are identical. Here we wish to add the literals (or constants)
“11” and “22”. The result is stored at the address ADR. When the
operand is specified as part of the instruction, as it is in the above
example, this is called immediate addressing. (The various ad-
dressing modes will be discussed in detail in Chapter 5.) Storing
the result at a specified address, such as STA ADR, is called abso-
lute addressing when ADR represents a regular 16-bit address.

Exercise 3.6: Could we move the CLC instruction in the program
below the instruction LDA?

BCD Subtraction

BCD subtraction appears to be complex. In order to perform a
BCD subtraction, one must add the 10’s complement of the num-
ber, just like one adds the 2’s complement of a number to perform
a binary subtract. The 10’s complement is obtained by comput-
ing the complement to 9, then adding 1. This typically requires
three to four operations on a standard microprocessor. However,
the 6502 is equipped with a special BCD subtraction instruction
which performs this in a single instruction! Naturally, and just as
in the binary example, the program will be preceded by the in-
structions SED, which sets the decimal mode, unless it has been
previously set, and SEC, which sets the carry to 1. Thus, the pro-
gram to subtract BCD “25’’ from BCD ‘26"’ is the following:

SED SET DECIMAL MODE
SEC SET CARRY

LDA #$26 LOAD BCD 26

SBC #$25 MINUS BCD 25

STA ADR STORE RESULT
16-Bit BCD Addition

16-bit addition is performed just as simply as in the binary
case. The program for such an addition appears below:

CLC
SED
LDA ADR1

66

BASIC PROGRAMMING TECHNIQUES

ADC ADR2
STA ADR3
LDA ADRI-1
ADC ADR2-1
STA ADR3-1

Exercise 3.7: Compare the program above to the one for the 16-bit
binary addition. What is the difference?

Exercise 3.8: Write the subtraction program for a 16-bit BCD. (Do
not use CLC and ADC!)

BCD Flags

In BCD mode, the carry flag during an addition indicates the
fact that the result is larger than 99. This is not like the two’s
complement situation, since BCD digits are represented in true
binary. Conversely, the absence of the carry flag during a subtrac-
tion indicates a borrow.

Programming Hints for Add and Subtract

—Always clear the carry flag before performing an addition.

—Always set the carry flag to 1 before performing a subtrac-
tion.

—Set the appropriate mode: binary or decimal.

Instruction Types

We have now used three types of microprocessor instructions.
We have used LDA and STA, which respectively load the ac-
cumulator from the memory address and store its contents at the
specified address. These two instructions are data transfer in-
structions.

Next, we have used arithmetic instructions, such as ADC and
SBC. They perform respectively an addition and a subtraction
operation. More ALU instructions will be introduced in this chap-
ter soon.

Finally, we have used instructions such as CLC, SEC and others,
which manipulate the flag bits (respectively the carry and the de-
cimal bits in our examples). They are status manipulation or con-
trol instructions. A comprehensive description of the 6502 instruc-

67

PROGRAMMING THE 6502

tions will be presented in Chapter 4.

Still other types of instructions are available within the micro-
procéssor which we have not yet used. They are in particular
the “branch” and “jump” instructions, which will modify the order
in which the program is being executed. This new type of instruc-
tion will be introduced in our next example.

Multiplicafion

Let us now examine a more complex arithmetic problem: the
multiplication of binary numbers. In order to introduce the al-
gorithm for a binary multiplication, let us start by examining a
usual decimal multiplication: We will multiply 12 by 23.

12 (Multiplicand) (MPD)
x23 (Multiplier) (MPR)
36 (Partial Product) (PP)
+24
=276 (Final Result) (RES)

The multiplication is performed by multiplying the right-most digit
of the multiplier by the multiplicand, i.e., 3"’ X ‘12”’. The partial
product is ““36.”” Then one multiplies the next digit of the multi-
plier, i.e., ‘2, by ¢12.” ‘24" is then added to the partial pro-
duct.

But there is one more operation: 24 is offset to the left by one
position. We will say that 24 is being shifted left by one position.
Equivalently, we could have said that the partial product (36) had
been shifted one position to the right before adding.

The two numbers, correctly shifted, are then added and the sum
is 276. This is simple. Let us now look at the binary multiplica-
tion. The binary multiplication is performed in exactly the same

way.
Let us look at an example. We will multiply 5 x 3:
5) 101 (MPD)
3 x011 (MPR)
101 (PP)
101
000

(15) 01111 (RES)

BASIC PROGRAMMING TECHNIQUES

In order to perform the multiplication, we operate exactly as
we did above. The formal representation of this algorithm ap-
pears in Figure 3-8. It is a flowchart for the algorithm, our first
flowchart. Let us examine it more closely.

|

SET RESULT TO ZERO
NO
LSB (MPR) = 17
1} YES
RESULT =
RESULT + MPD
| —

LEFT SHIFT (1) MPD
OR RIGHT SHIFT (1) RES

l

NEXT LSB (MPR)

Fig. 3-8: The Basic Multiplication Algorithm: Flowchart

This flow-chart is a symbolic representation of the algorithm we
have just presented. Every rectangle represents an order to be
carried out. It will be translated into one or more program in-
structions. Every diamond-shaped symbol represents a test being
performed. This will be a branching point in the program. If the
test succeeds, we will branch to a specified location. If the test
does not succeed, we will branch to another location. The concept
of branching will be explained later in the program itself. The
reader should now examine this flow-chart and ascertain that it
does indeed represent the algorithm exactly. Note that there is'an
arrow coming out of the last diamond at the bottom of the flow-
chart, back to the first diamond on top. This is because the same
portion of the flow-chart will be executed eight times, once for

69

PROGRAMMING THE 6502

every bit of the multiplier. Such a situation where execution will
restart at the same point is called a program loop, for obvious
reasons.

Exercise 3.9: Multiply "4” by "7” in binary using the flow chart,
and verify that you obtain "28” If you do not, try again. It is only if
you obtain the correct result that you are ready to translate this flow
.chart into a program.

Let us now translate this flow-chart into a program for the
6502. The complete program appears in Figure 3.9. We are now go-
ing to study it in detail. As you will recall from Chapter 1, pro-
gramming consists here of translating the flowchart of Figure
3-8 into the program of Figure 3-9. Each of the boxes in the flow-
chart will be translated by one or more instructions.

It is assumed that MPR and MPD already have a value.

LDA #0 ZERO ACCUMULATOR
STA TMP CLEAR THIS ADDRESS
STA RESAD CLEAR
STA RESAD+1 CLEAR
LDX #8 X ISCOUNTER
MULT LSR MPRAD SHIFT MPR RIGHT

BCC NOADD TEST CARRY BIT
LDA RESAD LOAD A WITH LOW RES
CLC PREPARE TO ADD
ADC MPDAD ADD MPD TO RES
STA RESAD SAVE RESULT
LDA RESAD+1 ADD REST OF SHIFTED MPD
ADC TMP
STA RESAD+1

NOADD ASL MPDAD SHIFT MPD LEFT

ROL TMP SAVE BIT FROM MPD
DEX DECREMENT COUNTER
BNE MULT DO IT AGAIN IF COUNTER #0

Fig. 3-9: 8x8 Multiply

The first box of the flow-chart is an initialization box. It is neces-
sary to set a number of registers or memory locations to “0,” as
this program will require their use. The registers which will be
used by the multiplication program appear in Figure 3-10. On the
left of the illustration appears the relevant portion of the 6502
microprocessor. On the right of the illustration appears the rele-

70

BASIC PROGRAMMING TECHNIQUES

vant section of the memory. We will assume here that memory
addresses increase from the top to the bottom of the illustration.
Naturally, the reverse convention could be used. The X register on
the far left (one of the two index registers of the 6502) will be used
as a counter. Since we are doing an 8-bit multiplication, we will
have to test 8 bits of the multiplier. Unfortunately, there is no in-
struction in the 6502 which allows us to test those bits in se-
quence. The only bits that can conveniently be tested are the
flags in the status register. As a result of this limitation of most
microprocessors, in order to test successively all the bits of the
multiplier, it will be necessary to transfer the multiplier value
into the accumulator. Then, the contents of the accumulator will
be shifted right. A shift instruction moves every bit in the regis-
ter by one position to the right or to the left. The bit which falls
off the register drops into the carry bit of the status register. The
effect of a shift operation is illustrated in Figure 3-11. There are
many variations possible depending upon the bit that comes into
the register, but these differences will be discussed in Chapter 4
(6502 instruction set).

DATA BUS _—\j
<
S S — o []
>
Twe) ._I
e
/ADDRESSES
(RESAD) RES,LO Low]|
[T
RS, HIGH

IMEMORY)

Fig. 3-10: Multiplication: The Registers

Let us go back to the successive testing of each of the 8 bits of
the multiplier. Since one can easily test the carry bit, the multi-
plier will be shifted by one position 8 times. Every time its right-
most bit will fall into the carry bit, where it will be tested.

The next problem to be solved is that the partial product which
is accumulated during the successive additions will require
16 bits. Multiplying two 8-bit numbers may yield a 16-bit re-

71

PROGRAMMING THE 6502

sult. This is because 28x28=216, We need to reserve 16 bits for this
result. Unfortunately, the 6502 has very few internal registers, so
that this partial product cannot be stored within the 6502 itself.
In fact, because of the limited number of registers, we are unable
to store the multiplier, the multiplicand, or the partial product
within the 6502. They will all be stored in the memory. This will
result in a slower execution than if it were possible to store them
all in internal registers. This is a limitation inherent in the 6502.
The memory area used for the multiplication appears on the right
of Figure 3-10. On top one can see the memory word allocated for
the multiplier. We will assume, for example, that it contains “3” in
binary. The address of this memory location is MPRAD. Below it,
we find a “temporary” whose address is TMP. The role of this
location will be clarified below. We will shift the multiplicand left
into this location prior to adding it to the partial product. The
multiplicand is next and will be assumed to contain the value “5”
in binary. Its addressis MPDAD.

Finally, at the bottom of the memory, we find the two words
allocated for the partial product or the result. Their address is
RESAD.

SHIFT LEFT

MNP NP DD I

-0
(CARRY

ROTATE LEFT

LN DN D

CARRY >

Fig. 3-11: Shift and Rotate

72

BASIC PROGRAMMING TECHNIQUES

These memory locations will be our “working registers,” and
the word “register” may be used interchangeably with “location”
in this context.

The arrow which appears on the top right of the illustration
coming out of MPR into bit C is a symbolic way of showing how
the multiplier will be shifted in the carry bit. Naturally, this carry
bit is physically contained within the 6502 and not within the
memory.

Let us now go back to the program of Figure 3-9. The first five
instructions are initialization instructions:

The first four instructions will clear the contents of “registers”
TMP, RESAD, and RESAD+1. Let us verify this.

LDA #0

This instruction loads the accumulator with the literal value “0.”
As a result of this instruction, the accumulator will contain

¢00000000.”’
The contents of the accumulator will now be used to clear the

three “registers” in the memory. It must be remembered that
reading a value out of a register does not empty it. It is possible to
read as many times as necessary out of a register. Its contents are
not changed by the read operation. Let us proceed:

STA TMP

This instruction stores the contents of the accumulator in mem-
ory location TMP. Refer to Figure 3-10 to understand the flow of
data in the system. The accumulator contains “00000000.” The
result-of this instruction will be to write all zeroes in memory
location TMP. Remember that the contents of the accumulator
remain O after a read operation on the accumulator. It is unchanged.
We are going to use it again.

STA RESAD

This instruction operates just like the one before and clears the
contents of address RESAD. Let us do it one more time:

STA RESAD+1

We finally clear memory location RESAD+1 which has been re-
served to store the high part of the result. (The high half is bits
8-15; the low part is bits 0-7.)

Finally, in order to able to stop shifting the multiplier bits

73

PROGRAMMING THE 6502

at the right time, it is necessary to count the number of shifts that
have to be performed. Eight shifts are necessary. Register X will
be used as a counter and initialized to the value “8.” Every time
that the shift will have been performed, the contents of this
counter will be decremented by 1. Whenever the value of this
counter reaches “0,” the multiplication is finished. Let us ini-
tialize this register to “8”:

LDX #8

This instruction loads the literal “8” into register X.

Referring back to the flow chart of Figure 3-8, we must test the
least significant bit of the multiplier. It has been indicated above
that this test cannot be performed in a single instruction. Two instruc-
tions must be used. First the multiplier will be shifted right, then the
bit which fell out of it will be tested. It is the carry bit. Let us perform
these. operations:

LSR MPRAD

This instruction is a “‘Logical Shift Right’’ of the contents of
memory location MPRAD.

Exercise 3.10: Assuming that the multiplier in our example is
“8, which bit falls off the right end of memory location MPRAD?
(In other words, which will be the value of the carry after this
shift?)

The next instruction tests the value of the carry bit:
BCC NOADD

This instruction means “Branch if Carry Clear” (i.e. equals zero)
to the address NOADD.

This is the first time we encounter a branch instruction. All the
programs we have considered so far have been strictly sequential.
Each instruction was executed after the previous one. In order to
be able to use logical tests such as testing the carry bit, one must
be able to execute instructions anywhere in the program after the
test. The branch instruction performs just such a function. It will
test the value of the carry bit. If the carry was “0,” i.e,, if it was
cleared, then the program will branch to address NOADD. This
means that the next instruction executed after the BCC will be
the instruction at address NOADD if the test succeeds.

74

BASIC PROGRAMMING TECHNIQUES

Otherwise, if the test fails, no branch will occur and the in-
struction following BCC NOADD will be normally executed.

One more explanation is in order about NOADD: this is a sym-
bolic label. It represents an actual physical address within the
memory. For the convenience of the programmer, the assembler
program allows using symbolic names instead of actual addres-
ses. During the assembly process, the assembler will substitute
the real physical address instead of the symbol “NOADD.” This
improves the readability of the program substantially and also
allows the programmer to insert additional instructions between
the branch point and NOADD, without having to rewrite every-
thing. These merits will be studied in more detail in Chaper 10 on
the assembler.

If the test fails, the next sequential instruction in the program
is executed. We will now study both alternatives:

Alternative 1: the carry was "1”
If the carry was 1, the test specified by BCC has failed and the next
instruction after BCC is executed.

LDA RESAD

Alternative 2: the carry was "0’
The test succeeds, and the next instruction is the one at label
“NOADD.”

Referring to Figure 3-8, the flow-chart specifies that if the carry
bit was 1, the multiplicand must be added to the partial product
(here, the RES registers). Also, a shift must be performed. The
partial product must be moved by one position to the right or else
the multiplicand must be moved by one position to the left. We
will adopt here the usual convention in performing multiplica-
tions by hand, and we will move the multiplicand by one position
to the left.

The multiplicand is contained in registers TMP and MPDAD.
(To simplify, we call memory locations “registers,” a usual term.)
The 16 bits of the partial "product are contained in memory ad-
dresses RESAD and RESAD +1.

In order to illustrate this, let us assume that the multiplicand
was ‘‘5.”” The various registers appear in Figure 3-10.

We simply have to add two 16-bit numbers. This is a problem
that we have learned to solve. (If you have any doubts, refer to
the section on 16-bit addition above.) We are going to add the low-

5

PROGRAMMING THE 6502

order bytes first, and then the high-order bytes. Let us proceed:
LDA RESAD

The accumulator is loaded with the low part of RES.

CLC

Prior to any addition, the 6502 requires that the éarry bit be
cleared. It is important to do so here as we know that the carry bit
had been set to 1. It must be cleared.

ADC MPDAD

The multiplicand is added to the accumulator, which contains
(RES)LOW.

STA RESAD

The result of the addition is saved at the appropriate memory
location, (RES)LOW. The second half of the addition is then per-
formed. When checking execution of this program later by hand,
do not forget that the addition will set the carry bit. The carry will
be set to either “0” or “1” depending on the results of the addition.
Any carry that might have been generated will automatically be
carried forward into the high-order part of the result.

Let us now finish the addition:

LDA RESAD+1
ADC TMP
STA RESAD+1

These three instructions complete our 16-bit add. We have now
added the multiplicand to RES. We still have to shift it by one
position to the left in anticipation of the next addition. We could
also have considered shifting the multiplicand by one position
to the left before adding, except for the first time. This is one of many
programming options which are always open to the programmer.

Let us shift the multiplicand to the left:

NOADD ASL MPDAD

This instruction is an “Arithmetic Shift Left.” It will shift by one
position to the left the contents of memory location MPDAD
which happens to contain the low part of the multiplicand. This is
not enough. We cannot afford to lose the bit which falls off the left

76

BASIC PROGRAMMING TECHNIQUES

end of the multiplicand. This bit will fall into the carry bit. It
should not be stored there permanently since it can be destroyed
by any arithmetic operation. This bit should be saved in a
“permanent” register. It should be shifted into memory location
TMP. This is precisely accomplished by the next instruction:

ROL TMP

This specifies: “Rotate Left” the contents of TMP.

One interesting observation can be made here. We just used two
different kinds of shift instructions to shift a register by one posi-
tion to the left. The first one is ASL. The second one is ROL.
‘What ' is the difference?

The ASL instruction shifts the contents of the register. The
ROL instruction is a rotate instruction. It does shift the contents
of the register by one position to the left, and the bit falling off the
left end goes into the carry bit, as usual. The difference is that the
previous contents of the carry bit are forced into the right-most posi-
tion. This is called a circular rotation in mathematics (a 9-bit
rotation). This is exactly what we want. As a result of the ROL,
the bit which had been shifted out of MPDAD on the left and pre-
served in the carry bit C will land in the right-most position of
register TMP. It works.

We are now finished with the arithmetic portion of this pro-
gram. We still have to test whether we have performed the opera-
tion eight times, i.e., whether we are finished. As usual in most
microprocessors, this test will require two instructions:

DEX

This instruction decrements the contents of register X. If it con-
tained 8, its contents will be 7 after execution of this instruction.

BNE MULT

This is another test-and-branch instruction. It specifies “branch if
result is not equal to 0 to location MULT” As long as our counter-
register decrements to a non-zero integer, there will be an au-
tomatic branch back to label MULT. This is called the multiplica-
tion loop. Referring back to the multiplication flow-chart, this corre-
ponds to the arrow coming out of the last box. This loop will be
executed 8 times.

Exercise 3.11: What happens when X decrements to 0? What is

71

PROGRAMMING THE 6502

the next instruction to be executed?

In most cases, the program that we just developed will be a
subroutine and the final instruction in the subroutine will be
RTS. The subroutine mechanism will be explained later in this
chapter.

IMPORTANT SELF-TEST

If you wish to learn how to program, it is extremely important
that you understand such a typical program in complete detail.
We have introduced many new instructions. The algorithm is rea-
sonably simple, but the program is much longer than the previous
programs that we have developed so far. It is very strongly sug-
gested that you do the following exercise completely and correctly
before you proceed in this chapter. If you do it correctly, you will
have really understood the mechanism by which instructions
manipulate the contents of memory and of the microprocessor
registers and how the carry flag is being used. If you do not, it is
likely that you will experience difficulties in writing programs
yourself. Learning to program does involve actually programming.
Please pause to take a piece of paper and do the following exer-
cise.

Exercise 3.12: Every time that a program is written, one should
verify it by hand, in order to ascertain that its results will be correct.
We are going to do just that: the purpose of this exercise is to fill in
the table of Figure 3-12.

You can write directly on it or else make a copy of it. The
purpose is to determine the contents of every relevant register
and memory location in the system after each instruction is exe-
cuted by this program, from beginning to end. You will find hori-
zontally on Figure 3-12 all the register locations used by the
program: X, A, MPR, C (the carry bit flag), TMP, MPD, RESADL,
RESADH. On the left part of the illustration you must fill in the
label, if applicable, and the instruction being executed. At the
right of the illustration you must write the contents of every reg-
ister after execution of that instruction. Whenever the contents
of a register are indefinite, we will use dashes. Let us start filling

78

6L

LABEL

"INSTRUCTION

A MPR

TEMP

MPD

(RESAD)L

(RESAD)H

Fig. 3-12: Form To Be Filled Out For Exercise 3-12

SINOINHI3L ONIWWVIOO0JUd DISvd

PROGRAMMING THE 6502

in this table together. You will have to fill in the remainder alone.
The first line appears below:

LABE

INSTRUCTION x A MR 4 TEMP MPD (RESADK (RISADMH
AR |———mm 00000000 | 00000011 | == [===== 0000010} |=—= = | = m o e

Fig. 3-13: First Instruction of Multiplication

The first instruction to be executed is LDA #0.

After execution of this instruction, the contents of register X
are unknown. This is indicated by dashes. The contents of the
accumulator are all zeroes. We also assume that the multiplier
and the multiplicand had been loaded by the programmer prior to
execution of this program. (Otherwise, additional instructions
would be needed to set the contents of MPR and MPD.) We find in
MPR the binary value for “3.” We find in MPD the binary value
for “5” The carry bit is undefined. Register TMP is undefined.
And both registers used for RESAD are undefined. Let us now fill
the next line. It appears below; the only difference is that the con-
tents of register TMP have been set to ‘0.’ The next instruction
will set the contents of RESAD to ‘‘0’’ and the one after will set
the contents of RESAD +1 to “0”

LABEL | INSTRUCTION x A mor c Teme mep rsaon mtsaom
AR [-———— 00000000 | 0000001 [== | === 00000101 | == — == [e m
STA TEMP 00000000

Fig. 3-14: First Two Lines of Multiplication

The fifth instruction, #8, will set the contents of X to ¢8.”” Let
us do one more instruction set (see Figure 3-15).

The LSR MPRAD instruction will shift the contents of MPRAD
right by one position. You can see that after the shift the contents
of MPR are “0000 0001.”’ The right-most ‘1>’ of MPR has fallen

BASIC PROGRAMMING TECHNIQUES

LABEL | INSTRUCTION x A moR c Teme mo oesaon | ersaom
DA [——=—— 00000000 | 0000001 [== 00000101

ADC MPDAD
10t | STARESAD 00000101

NOADD | ASL MPDAD 00001010

00000111

Fig. 3-15: Partially Completed Form For Exercise 3-12

into the carry bit. Bit C is now set to 1. Other registers are un-
changed. _

It is now your turn. Please fill in the rest of this table com-
pletely. It is not difficult, but it does require attention. If you have
doubts about the role of some instructions, you may want to refer
to Chapter 4 where you will find each of them listed and de-
scribed, or else to the Appendix section of this book where they
are listed in table form.

The final result of your multiplication should be ¢‘15’’ in binary
form, contained in registers RESAD low and high. RESAD high should
be set to ‘0000 0000.”” RESAD low should be 0000 1111.” If you
obtained this result, you won. If you did not, try one more time.
The most frequent source of errors is a mishandling of the carry
bit. Make sure that the carry bit is changed every time you per-
form an arithmetic instruction. Do not forget that the ALU will
set the carry bit after each addition operation.

Programming Alternatives

The program that we have just developed is one of many
ways in which it could have been written. Every programmer can
find ways to modify and sometimes improve a program. For
example, we have shifted the multiplicand left before adding. It
would have been mathematically equivalent to shift the result by
one position to the right before adding it to the multiplicand. The
advantage is that we would not have required register TMP, thus
saving one memory location. This would be a preferred method in
a microprocessor equipped with enough internal registers so that

81

PROGRAMMING THE 6502

MPR, MPD, and RESAD could be contained within the microproces-
sor. Since we were obliged to use the memory to perform these
operations, saving one memory location is not relevant. The ques-
tion is, therefore, whether the second method might result in a
somewhat faster multiplication. This is an interesting exercise:

Exercise 3.13: Now write an 8x8 multiply, using the same al-
gorithm, but shifting the result by one position to the right instead of
shifting the multiplicand by one position to the left. Compare it to
the previous program and determine whether this different ap-
proach would be faster or slower than the preceding one.

One more problem may come up: In order to determine the
speed of the program, you may want to refer to the tables in the
Appendix section which list the number of cycles required by
each instruction. However, the number of cycles required by
some instructions depends on where they are located. A special
addressing mode exists for the 6502 called the Direct Addressing
Zero Page Mode, where the first page (memory location 0 to 255)
is reserved for fast execution. This will be explained in Chapter 5
on addressing techniques. Briefly, all programs that require a
fast execution time will use variables located in page 0 so that in-
structions require only two bytes to address memory locations
(addressing 256 locations requires only one byte), whereas instruc-
tions located anywhere else in the memory will typically require
3-byte instructions. Let us defer this analysis until after Chap-
ter 5.

An Improved Multiplication Program

The program we have just developed is a straightforward
translation of the algorithm into code. However, effective pro-
gramming requires close attention to detail so that the length of
the program can be reduced and so that its execution speed can be
improved. We are now going to present an improved implementa-
tion of the same algorithm.

One of the tasks which consume instructions and time is the
shifting of the result and the multiplier. A standard “trick” used
in the multiply algorithm is based on the following observation:
every time that the multiplier is shifted by one bit position to the
right, a bit position becomes available on the left. Simultane-
ously, we can observe that the first result (or partial product) will

82

BASIC PROGRAMMING TECHNIQUES

use, at most, 9 bits. After the next multiply shift, the size of the
partial product will be increased by one bit again. In other words,
we can just reserve, initially, one memory location for the partial
product and then use the bit positions which are being freed by
the multiplier as it is being shifted.

We are now going to shift the multiplier right. It will free one bit posi-
tion to the left. We are going to enter the right-most bit of the partial
product into this bit position that has been freed. Let us now consider the
program.

Let us now also consider the optimal use of registers. The inter-
nal registers of the 6502 appear in Fig. 3-16. X is best used as a
counter. We will use it to count the number of bits shifted. The
accumulator is (unfortunately) the only internal register which
can be shifted. In order to improve eff1c1ency. we should store in
it either the multiplier or the result.

7 o

[A j ACCUMULATOR

INDEX

I Ll S j STACK POINTER

[PC j PROGRAM COUNTER

[T e

Fig. 3-16: 6502 Registers

Which one should we put in the accumulator? The result must be
added to the multiplicand every time a 1 is shifted out. Since the
6502 also always adds something to the accumulator only, it is the
result which will reside in the accumulator.

The other numbers will have to reside in the memory (see Fig-
gure 3-17).

A and B will hold the result. A will hold the high part of the
result, and B will hold the low part of the result. A is the ac-
cumulator, and B is a memory location, preferably in page 0. C
will hold the multiplier (a memory location). D holds the multipli-

83

PROGRAMMING THE 6502

(6802) (MEMORY)

Lo = M = 1

c mPR
+
] mep

W

Fig. 3-17: Register Allocation (Improved Multiply)

cand (a memory location). The program appears below:

MULT LDA #0 INITIALIZE RESULT TO ZERO (HIGH)
STA B INITIALIZE RESULT (LOW)
LDX #8 X IS SHIFT COUNTER
LOOP LSR C SHIFT MPR
BCC NOADD
CLC CARRY WAS ONE. CLEAR IT
ADC D A=A+ MPD
NOADD ROR A SHIFT RESULT
ROR B CATCH BIT INTO B
DEX DECREMENT COUNTER

BNE LOOP LAST SHIFT?
Fig. 3-18: Improved Muitiply

Let us examine the program. Since A and B will hold the result,
they must be initialized to the value 0. Let us do it:

MULT LDA #0
STA B

We will then use register X as a shift counter and initialize it to
the value 8:

LDX #8

We are now ready to enter the main multiplication loop as
before. We will first shift the multiplier, then test the carry bit
which holds the right-most bit of the multiplier, which has fallen
off. Let us do it:

LOOP LSR C
BCC NOADD

84

BASIC PROGRAMMING TECHNIQUES

Here we shift the multiplier right as before. This is equivalent
to the previous algorithm because the addition operation is said
to be communicative.

Two possibilities exist: if the carry was 0, we will branch to
NOADD. Let us assume that the carry was 1. We will proceed:

CLC
ADCD

Since the carry was 1, it must be cleared, and we then add the
multiplicand to the accumulator. (The accumulator holds the re-
sults, 0 so far.)

Let us now shift the partial product:

NOADD RORA
RORB

The partial product in A is shifted right by one bit. The right-
most bit falls into the carry bit. The carry bit is captured and
rotated into register B, which holds the low part of the result.

We simply have to test whether we are finished:

DEX
BNE LOOP

If we now examine this new program, we see that it has been
written in about half the number of instructions of the previous
program. It will also execute much faster. This shows the value of
selecting the correct registers to contain the information.

A straightforward design will result in a program that works. It
will not result in a program that is optimized. It is, therefore, of
significant importance to use the available registers and memory
locations in the best possible way. This example illustrates a ra-
tional approach to register selection for maximum efficiency.

Exercise 3.14: Compute the speed of a multiplication operation
using this last program. Assume that a branch will occur in fifty
percent of the cases. Look up the number of cycles required by every
instruction in the table at the end of the book. Assume a clock rate
of one cycle = 1 microsecond.

85

PROGRAMMING THE 6502

Binary Division

The algorithm for binary division is analogous to the one which
has been used for multiplication. The divisor is successively
subtracted from the high order bits of the dividend. After each
subtraction, the result is used instead of the initial dividend. The
value of the quotient is simultaneously increased by 1 every time.
Eventually, the result of the subtraction is negative. This is called
an overdraw. One must then restore the partial result by adding
the divisor back to it. Naturally, the quotient must be simultane-
ously decremented by 1. Quotient and dividend are then shifted
by one bit position to the left and the algorithm is repeated.

The method just described is called the restoring method. A
variation of this method which yields an improved speed of execu-
tion is called non-restoring method.

INITIAUZE:
QUOTIENT = 0
SHIFICOUNTER =8

—— i

SHIFT LEFT

DIVIDEND
{WITH 8 LEADING 0'S)
AND QUOTIENT

l

TRIAL SUBTRACT:

LEFT (DIVIDEND)-DVISOR

END (REMAINDER IS IN LEFT (DIVIDEND))

Fig. 3-19: 8 Bit Binary Division Flowchart

The 16-bit Division

The non-restoring division for a 16-bit dividend, and an 8-bit divisor
will now be described. The result will have 8 bits. The register and memory

86

BASIC PROGRAMMING TECHNIQUES

location for this program are shown in Fig. 3-22. The dividend is con-
tained in the accumulator (high part) and in memory location 0, called B
here. The result is contained in Q (memory location 1). The divisor is
contained in D (memory location 2). The result will be contained in Q and
A (A will contain the remainder).

The program appears on Fig. 3-21, the corresponding flow chart is
shown in Fig. 3-20.

Exercise 3.15: Verify the correct operation of this program by
performing the division by hand and exercising the program, as
you did in Exercise 3.12. Divide 33 by 3. The result naturally
should be 11, with a remainder of 0.

LOGICAL OPERATIONS

The other class of instructions that the ALU inside the micro-
processor can execute is the set of logical instructions. They in-
clude: AND, OR and exclusive OR (EOR). In addition, one can also
include there the shift operations which have already been
utilized, and the comparison instruction, called CMP for the 6502.
The individual use of AND, ORA, EOR, will be described in Chap-
ter 4 on the 6502 instruction set. Let us now develop a brief
program which will check whether a given memory location
called LOC contains the value “‘0,”’ the value ‘‘1,”’ or something
else. The program appears below:

LDA LOC READ CHARACTER IN LOC
CMP #$00 COMPARE TO ZERO
BEQ ZERO ISITAO0?
CMP #$01 1?
BEQ ONE
NONE FOUND

ZERO

ONE

The first instruction: LDA LOC reads the contents of memory
location LOC. This is the character we want to test.

CMP #$00

87

PROGRAMMING THE 6502

l

BIT COUNTER
=8

| 4
[resur=pivioeno |

Y
[res=res-p |

y ¥]

ROTATE QUOTIENT
LEFT

\

| sHrTresierr |

NO

| res=res+p 1 | RES=RES—D |

L

DECREMENT
BIT COUNTER

<
E YES

[]
*_J

ROTATE
QLEFT

l

out

Fig. 3-20: 16 by 8 Division Flowchart

LINE # LOC
0002 0000
0003 0000
0004 0001
0005 0002
0006 0003
0007 0200
0008 0202
0009 0203
0010 0205
0011 0206
0012 0208
0013 020A
0014 0208
0015 020C
0016 020€
0017 0210
0018 0213
0019 0215
0020 0216
0021 0218
0022 021A
0023 021C
0024 0210
0025 021F
0026 0220

BASIC PROGRAMMING TECHNIQUES

CODE

A0 08
38
E502
08
2601
06 00
2A

28
9005
E502
4C1502
6502
88

DO ED
B0 03
6502
8
2601
00

LINE

oo ®

DIiv

LOOP

ADD
NEXT

LAST

Fig. 3-21: Program

(A)

(ALSO REMAINDER)

*

$0
A
* 40
t 40
* = $200
LDY #8
SEC
SBCD
PHP
ROLQ
ASLB
ROLA

PLP
BCC ADD
SBCD
JMP NEXT
ADCD
DEY

BNE LOOP
BCS LAST
ADCD
cc
ROLQ
BRK

END

*

*

*

e

DIvL

(8)

]

= = <

RESULT
()]

02

DIVISOR

PROGRAM

STACK

Fig. 3-22: 16 by 8 Division Registers and Memory Map (non-restoring 8-bit result)

89

PROGRAMMING THE 6502

This instruction compares the contents of the accumulator with
the literal hexadecimal value “00” (i.e., the bit pattern
€“00000000°’). This comparison instruction will set the Z bit in the
flags register, which will then be tested by the next instruction:

BEQ ZERO

The BEQ instruction specifies “branch if equal” The branch
instruction will determine whether the test succeeds by examin-
ing the Z bit. If set, the program will branch to ZERO. If the test
fails, then the next sequential instruction will be executed:

CMP #$01

The process will be repeated against the new pattern. If the test
succeeds, the next instruction will result in a branch to location
one. If it fails, the next sequential instruction will be executed.

Exercise 3.16: Write a program which will read the contents of
memory location ‘24’ and branch to the address called “STAR” if
there were a ‘““*’’ in memory location 24. The bit pattern for a *““*’’ in
assembly language notation is represented by “°00101010°".

SUMMARY

We have now studied most of the important instructions of the
6502 by using them. We have transferred values between the
memory and the registers. We have performed arithmetic and
logical operations on such data. We have tested it, and depending
on the results of these tests, we have executed various portions of
the program. We have also introduced a structure called the loop,
in the multiplication program. An important programming struc-
ture will be introduced now: the subroutine.

SUBROUTINES

In concept, a subroutine is simply a block of instructions which
has been given a name by the programmer. From a practical
standpoint, a subroutine must start with a special instruction
called the subroutine declaration, which identifies it as such for
the assembler. It is also terminated by another special instruction
called a return. Let us first illustrate the use of subroutines in the
program in order to demonstrate its value. Then, we will examine
how it is actually implemented.

90

BASIC PROGRAMMING TECHNIQUES

SUBROUTINE

CALL SUB

CALLSUB e — - —— £ . T RETURN

Fig. 3-23: Subroutine Calls

The use of a subroutine is illustrated in Figure 3-23. The main
program appears on the left of the illustration. The subroutine is
represented symbolically on the right. Let us examine the sub-
routine mechanism. The lines of the main program are executed
succesively until a new instruction, CALL SUB, is met. This
special instruction is the subroutine call and results in a transfer
to the subroutine. This means that the next instruction to be
executed after the CALL SUB is the first instruction within the
subroutine. This is illustrated by arrow 1 in the illustration.

Then, the subprogram within the subroutine executes just like
any other program. We will assume that the subroutine does not
contain any other calls. The last instruction of this subroutine is a
RETURN. This is a special instruction which will cause a return
to the main program. The next instruction to be executed after
the RETURN is the one following the CALL SUB. This is illus-
trated by arrow 3 in the illustration. Program execution con-
tinues then as illustrated by arrow 4.

In the body of the main program a second CALL SUB appears.
A new transfer occurs, shown by arrow 5. This means that the
body of the subroutine is again executed following the CALL SUB
instruction.

Whenever the RETURN within the subroutine is encountered,
a return occurs to the instruction following the CALL SUB in
question. This is illustrated by arrow 7. Following the return to
the main program, program execution proceeds normally, as illus-
trated by arrow 8.

The role of the two special instructions CALL SUB and RE-

91

PROGRAMMING THE 6502

TURN should now be clear. What is the value of the subroutine?

The essential value of the subroutine is that it can be called
from any number of points in the main program and used re-
peatedly without rewriting it. A first advantage is that this ap-
proach saves memory space and there is no need to rewrite the
subroutine every time. A second advantage is that the pro-
grammer can design a specific subroutine only once and then use
it repeatedly. This is a significant simplification in program de-
sign.

Exercise 3.17: What is the main disadvantage of a subroutine?

The disadvantage of the subroutine should be clear just from
examining the flow of execution between the main program and
the subroutine. A subroutine results in a slower execution, since
extra instructions must be executed: the CALL SUB and the RE-
TURN.

Implementation of the Subroutine Mechanism

We will examine here how the two special instructions, CALL
SUB and RETURN, are implemented internally within the processor.
The effect of the CALL SUB instruction is to cause the next instruct-
ion to be fetched at a new address. You will remember (or else read
Chapter 1 again) that the address of the next instruction to be ex-
ecuted in a computer is contained in the program counter (PC). This
means that the effect of the CALL SUB is to substitute new contents
in register PC. Its effect is to load the start address of the subrou-
tine in the program counter. Is that really enough?

To answer this question, let us consider the other instruction
which has to be implemented: the RETURN. The RETURN must
cause, as its name indicates, a return to the instruction that fol-
lows the CALL SUB. This is possible only if the address of this
instruction has been preserved somewhere. This address happens
to be the value of the program counter at the time that the CALL
SUB was encountered. This is because the program counter is
automatically incremented every time it is used (read Chapter 1
again?). This is precisely the address that we want to preserve so
that we can later perform RETURN.

The next problem is: where can we save this return address?

92

BASIC PROGRAMMING TECHNIQUES

This address must be saved in a reasonable location where it is
guaranteed that it will not be erased. However, let us now consi-
der the following situation, illustrated by Figure 3-24: in this
example, subroutine 1 contains a call to SUB2. Our mechanism
should work in this case as well. Naturally, there might even be
more than two subroutines, say N ‘‘nested’’ calls. Whenever a
new CALL is encountered, the mechanism must therefore store
the program counter again. This implies that we need at least 2N
memory locations for this mechanism. Additionally, we will need
to return from SUB2 first and SUBI1 next. In other words, we need
a structure which can preserve the chronological order in which
data will have been saved.

The structure has a name. We have already introduced it. It is
the stack. Figure 3-26 shows the actual contents of the stack
during successive subroutine calls. Let us look at the main pro-
gram first. At address 100, the first call is encountered: CALL
SUB1. We will assume that, in this microprocessor, the subroutine
call uses 3 bytes. The next sequential address is therefore not

MAIN
suB) suB2
[ZUET 3] " CAUSUB2 —
RETURN ‘ RETURN

Fig. 3-24: Nested Calls

“101”, but‘“103.”’ The CALL instruction uses addresses “100”,
“101”, and ““102”’. Because the control unit of the 6502 ‘‘knows’ that it
is a 3-byte instruction, the value of the program counter when the
call has been completely decoded will be “103”. The effect of the
call will be to load the value “280” in the program counter. “280”
is the starting address of SUBL1.

The second effect of the CALL will be to push into the stack (to
preserve) the value “103” of the program counter. This is illus-
trated at the bottom left of the illustration which shows that at
time 1, the value ¢103” is preserved in the stack. Let us move to
the right of the illustration. At location 300, a new call is encoun-

93

PROGRAMMING THE 6502

tered. Just as in the preceding case, the value ““900°’ will be
loaded in the program counter. This is the starting address of
SUB2. Simultaneously, the value “303” will be pushed into the
stack. This is illustrated at the bottom left of the illustration
where the entry at time 2 is “303”. Execution will then proceed
to the right of the illustration within SUB2.

We are now ready to demonstrate the effect of the RETURN
instruction and the correct operation of our stack mechanism.
Execution proceeds within SUB2 until the RETURN instruction
is encountered at time 3. The effect of the RETURN instruction is
simply to pop the top of the stack into the program counter. In
other words, the program counter is restored to its value prior to
the entry into the subroutine. The top of the stack in our example
is ¢¢303.”” Figure 3-26 shows that, at time 3, value *‘303’’ has been
removed from the stack and has been put back into the program
counter. As a result, instruction execution proceeds from address
“303.” At time 4, the RETURN of SUBI is encountered. The value
on top of the stack is ““103.”” It is popped and is installed in the
program counter. As a result, the program execution will proceed
from location ““103’’ on within the main program. This is, indeed,

ADDRESS (MAIN)
100: CALLSUB) O
1

103: (suB 1)

280

@ 900 (SUB 2)
— 300: CALLSUB 2
303:
RETURN —_—

R RETURN

Fig. 3-25: The Subroutine Calls

the effect that we wanted. Figure 3-26 shows that at time 4 the
stack is again empty. The mechanism works.

94

BASIC PROGRAMMING TECHNIQUES

The subroutine call mechanism works up to the maximum di-
mension of the stack. This is why early microprocessors, which
had a 4 or 8-register stack, were essentially limited to 4 or 8 levels
of subroutine calls. In theory, the 6502, which is restricted to 256
memory locations for the stack (Page 1), can therefore accommo-
date up to 128 successive subroutine calls. This is true only if
there are no interrupts, if the stack is used for no other purpose,
and if no register needs be stored within the stack. In practice,
fewer subroutine levels will be used.

Note that, on illustrations 3-24 and 3-25, the subroutines
have been shown to the right of the main program. This is only for
the clarity of the diagram. In reality, the subroutines are typed by
the user as regular instructions of the program. On a sheet of

stack: | TMEQ) | TMEQ@) | TIMER) | TIME (@)

103 103 103

303

Fig. 3-26: Stack vs. Time

paper, in a listing of the complete program, the subroutines may
be at the beginning of the text, in its middle, or-at the end. This is
why they are preceded by a subroutine declaration: they must be
identified. The special instructions tell the assembler that what
follows should be treated as a subroutine. Such assembler di-
rectives will be presented in Chapter 10.

6502 Subroutines

We have now described the subroutine mechanism, and how the
stack is used to implement it. The subroutine call instruction for
the 6502 is called JSR (jump to subroutine). It is, indeed, a 3-byte
instruction. Unfortunately, it is an unconditional jump: it does not
test bits. Explicit branches must be inserted prior to a JSR if a
test need be performed.

The return from subroutine is the RTS instruction (Return
from subroutine). It is a 1-byte instruction.

PROGRAMMING THE 6502

Exercise 3.18:Why is the return from a subroutine as long as the
CALL? (Hint: if the answer is not obvious, look again at the stack
implementation of the subroutine mechanism and analyze the
internal operations that must be performed.)

Subroutine Examples

Most of the programs that we have developed and are going to
develop would usually be written as subroutines. For example,
the multiplication program is likely to be used by many areas of
the program. In order to facilitate program development and
clarify it, it is therefore convenient to define a subroutine whose
name would be, for example, MULT. At the end of this subroutine
we would simply add the instruction, RTS.

Exercise 3.19: If MULT is used as a subroutine, would it ‘‘damage’’
any internal flags or registers?

Recursion

Recursion is a word used to indicate that a subroutine is calling
itself. If you have understood.the implementation mechanism,
you should now be able to answer the following question:

Exercise 3.20: Is it legal to let a subroutine call itself? (In other
words, will everything work even if a subroutine calls itself?) If
you are not sure, draw the stack and fill it with the successive ad-
dresses. You will physically verify whether it works or not. This
will answer the question. Then, look at the registers and memory
(see Exercise 3.19) and determine if a problem exists.

Subroutine Parameters

When calling a subroutine, one normally expects the sub-
routine to work on some data. For example, in the case of the
multiplication, one wants to transmit two numbers to the sub-
routine which will perform the multiplication. We saw in the case
of the multiplication routine that this subroutine expected to find
the multiplier and the multiplicand in given memory locations. This
illustrates the first method of passing parameters: through mem-
ory. Two other techniques are used, and parameters can be passed
in three ways:

1. Through registers

96

BASIC PROGRAMMING TECHNIQUES

2. Through memory
3. Through the stack

—Registers can be used to pass parameters. This is an advan-
tageous ‘solution, provided that registers are available, since
one does not need to use a fixed memory location. The sub-
routine remains memory-independent. If a fixed memory loca-
tion is used, any other user of the subroutine must be very
careful that he uses the same convention and that the memory
location is indeed available (look at Exercise 3-20 above). This is
why, in many cases, a block of memory locations is reserved,
simply to pass parameters between various subroutines.

—Using memory has the advantage of greater flexibility (more data),
but results in poorer performance and also in tying up the sub-
routine to a given memory area.

—Depositing parameters in the stack has the same advantage as using
registers: it is memory-independent. The subroutine simply knows that
it is supposed to receive, say, two parameters which are stored on top
of the stack. Naturally, it has a disadvantage: it clutters the stack with
data and, therefore, reduces the number of possible levels of sub-
routine calls.

The choice is up to the programmer. In general, one wishes to
remain independent from actual memory locations as long as pos-
sible.

If registers are not available, the next best solution is usually
the stack. However, if a large quantity of information should be
passed to a subroutine, then this information will have to reside
in the memory. An elegant way around the problem of passing a
block of data is to simply transmit a pointer to the information. A
pointer is the address at the beginning of the block. A pointer can
be transmitted in a register (in the case of the 6502, this limits
the pointer to 8 bits), or else in the stack (two-stack locations can
be used to store a 16-bit address).

Finally, if neither of the two solutions is applicable, then an
agreement may be made with the subroutine that the data will be
at some fixed memory location (the ‘‘mailbox”’).

Exercise 3.21: Which of the three methods above is best for recur-
sion?

97

PROGRAMMING THE 6502

Subroutine Library

There is a strong advantage to structuring portions of a pro-
gram into identifiable subroutines: they can be debugged inde-
pendently and can have a mnemonic name. Provided that they
will be used in other areas of the program, they become shareable,
and one can thus build a library of useful subroutines. However,
there is no general panacea in computer programming. Using
subroutines systematically for any set of instructions that can be
grouped by function may also result in poor efficiency. The alert
programmer will have to weigh the advantages vs. the disadvan-
tages.

SUMMARY

This chapter has presented the way information is manipulated
inside the 6502 by instructions. Increasingly complex algorithms
have been introduced, and translated into programs. The main
types of instructions have been used.

Important structures such as loops, stacks and subroutines
have been defined.

You should now have acquired a basic understanding of pro-
gramming, and of the major techniques used in standard applica-
tions. Let us study the instructions available.

98

4
THE 6502 INSTRUCTION SET

PART 1- OVERALL DESCRIPTION

INTRODUCTION

This chapter will first analyze the various classes of instruc-
tions which should be available in a general purpose computer. It
will then analyze one by one all of the instructions available for
the 6502, and explain in detail their purpose and the manner in
which they affect flags, or can be used in conjunction with the
various addressing modes. A detailed discussion of addressing
techniques will be presented in Chapter 5.

CLASSES OF INSTRUCTIONS

Instructions may be classified in many ways, and there is no
standard. We will distinguish here five main categories of instruc-
tions:

data transfers
data processing
test and branch
input/output
control

SRS

Let us now examine in turn each of these classes of instruc-
tions.

Data transfers

Data transfer instructions will transfer 8-bit data between two

99

PROGRAMMING THE 6502

registers, or between a register and memory, or between a register
and an input/output device. Specialized transfer instructions may
exist for registers which play a special role, for example, a push
and pull operation, for efficient stack implementation. They will
move a word of data between the top of the stack and the ac-
cumulator in a single instruction, while automatically updating the
stack-pointer register.

Data Processing

Data processing instructions fall into four general categories:

- arithmetic operations (such as plus/minus)

- logical operations (such as AND, OR, exclusive OR)

- skew and shift operations (such as shift, rotate, swap)
- increment and decrement

It should be noted that for efficient data processing, it is desir-
able to have powerful arithmetic instructions, such as multiply and
divide. Unfortunately, this is not available on most microprocessors.
It is also desirable to have powerful shift and skew instructions, such
as shift n bits, or a nibble exchange, where the right half and the
left half of the byte are exchanged These are also unavailable on
most microprocessors.

Before examining the actual 6502 instructions, let us recall the
difference between a shift and a rotation. The shift will move the
contents of a register or a memory location by one bit:-location to
the left or to the right. The bit falling out of the register will go
into the carry bit. The bit coming in on the other side will be a “0.”

In the case of a rotation, the bit coming out still goes in the
carry. However, the bit coming in is the previous value which was
in the carry bit. This corresponds to a 9-bit rotation. It would often
be desirable to have a true 8-bit rotation where the bit coming in
on one side is the one falling off on the other side. This is not us-
ually provided on microprocessors. Finally, when shifting a word
to the right, it is convenient to have one more type of shift called
a sign-extension or an ‘‘arithmetic shift right’’. When doing opera-
tions on two’s complement numbers, particularly when implement-
ing floating-point routines, it is often necessary to shift a negative
number to the right. When shifting a two’s complement number to
the right, the bit which must come in on the left side should be a 1
(the sign bit should get repeated as many times as needed by the suc-

100

6502 INSTRUCTION SET

SHIFT LEFT

T‘f MM MDD 1,

(CARRY

ROTATE LEFT

L. (DD DD D A

“rhrlonts

Fig. 4-1: Shift and Rotate

cessive shifts). Unfortunately, this type of shift does not exist in the
6502. It exists in other microprocessors.

Test and Branch

The test instructions will test all bits of the flags register of “‘0”’
or “1,” or combinations. It is, therefore, desirable to have as many
flags as possible in this register. In addition, it is convenient to be
able to test for combinations of such bits with a single instruction.
Finally, it is desirable to be able to test any bit position in any
register, and to test the value of a register compared to the value of
any other register (greater than, less than, equal). Microprocessor
test instructions are usually limited to testing single bits of the
flags register. '

The jump instructions that may be available generally fall into
three categories:

- the jump proper, which specifies a full 16-bit address,

- the branch, which often is restricted to an 8-bit displacement
field,

- the call, which is used with subroutines.

101

PROGRAMMING THE 6502

It is convenient to have two- or even three-way branches, de-
pending, for example, on whether the result of a comparison is
“greater than,” “less than,” or “equal” It is also convenient to
have skip operations, which will jump forward or backwards by a
few instructions. Finally, in most loops, there is usually a decre-
ment or increment operation at the end, followed by a test and
branch. The availability of a single-instruction increment/
decrement plus test and branch is, therefore, a significant advan-
tage for efficient loop implementation. This is not available in
most microprocessors. Only simple branches, combined with sim-
ple tests, are available. This naturally complicates programming,
and reduces efficiency.

Input/Output

Input/output instructions are specialized instructions for the
handling of input/output devices. In practice, nearly all micro-
processors use memory-mapped I/0. This means that input/output
devices are connected to the address-bus, just like memory chips,
and addressed as such. They appear to the programmer as mem-
ory locations. All memory-type operations can then be applied to
desired devices. This has the advantage of providing a wide vari-
ety of instructions which can be applied. The disadvantage is that
memory-type operations normally require 3 bytes and are, there-
fore, slow. For efficient input/output handling in such an envi-
ronment, it is desirable to have a short addressing mechanism
available so that I/0 devices whose handling speed is crucial may
reside in page 0. However, if page 0 addressing is available, it is
usually used for RAM memory, and therefore prevents its effec-
tive use for input/output devices.

Control Instructions

Control instructions supply synchronization signals and may
suspend or interrupt a program. They can also function as a break
or a simulated interrupt. (Interrupts will be described in Chapter
6 on Input/Output Techniques.) .

INSTRUCTIONS AVAILABLE ON THE 6502

Data Transfer Instructions

The 6502 has a complete set of data transfer instructions, ex-

102

6502 INSTRUCTION SET

cept for the loading of the stack pointer, which is restricted in
flexiblility. The contents of the accumulator may be exchanged
with a memory location with the instructions LDA (load) and
STA (store). The same applies to registers X and Y. These are,
respectively, instructions LDX LDY, and STX STY. There is no
“direct loading for S. Inter-register transfers are naturally pro-
vided: the instructions are TAX (transfer A to X), TAY, TSX,
TXA, TXS, TYA. There is a slight asymmetry, since the stack
contents may be exchanged with X, but not with Y.

There is no 2-address memory to memory operation, such as “add
contents of LOC1 and LOC2.”

Stack Operations

Two “‘push’’ and ‘‘pop’’ operations are available. They transfer
register A or the status register (P) to the top of the stack in the
memory while updating the stack pointer S. They are PHA and
PHP. The reverse instructions are PLA and PLP (pull A and pull
P), which transfer the top of the stack respectively into A or P.

Data Processing
Arithmetic

The usual (restricted) complement of arithmetic, logical and
shift functions is available. Arithmetic operations are: ADC,
SBC. ADC is an addition with carry, and there is no addition
without carry. This is a minor nuisance as it requires a CLC
instruction prior to any addition. The subtraction is performed by
SBC.

A special decimal mode is available which allows the direct
addition and subtraction of numbers expressed in BCD. In many
other microprocessors only one of these BCD instructions is av-
ailable as a separate instruction code. The presence of the decimal
flag multiplies by two the effective number of arithmetic opera-
tions available.

Increment/Decrement

Increment and decrement operations are available on the
memory, and on index registers X and Y, but not on the ac-
cumulator. They are respectively: INC and DEC, which operate on
the memory; INX, INY and DEX, DEY, which operate on index
registers X and Y.

103

PROGRAMMING THE 6502

Logical Operations

The logical operations are the classic ones: AND, ORA, EOR.
The role of each of these instructions will be clarified.

AND

Each logical operation is characterized by a truth table, which
expresses the logical value of the result in function of the inputs.
The truth table for AND appears below:

0ANDO =0
0AND1 =0
1ANDO=0
1AND1=1

The AND operation is characterized by the fact that the output
is “1” only if both inputs are “1” In other words, if one of the
inputs is *0,” it is guaranteed that the result is “0.” This feature is
used to zero a bit position in a word. This is called “masking.”

One of the important uses of the AND instruction is to clear or
mask out one or more specified bit positions in a word. Assume, for
example, that we want to zero the right-most four-bit positions in a
word. This will be performed by the following program:

LDA WORD WORD CONTAINS 10101010’
AND #%11110000 11110000’ IS MASK

Let us assume that WORD is equal to ‘'10101010. The result of
this program is to leave in the accumulator the value ‘1010 0000’
“%” is used to represent a binary number.

Exercise 4.1: Write a three-line program which will zero bits 1 and
6 of WORD.

Exercise4.2: What happens with a mask: MASK = ‘111111112
ORA

This instruction is the inclusive OR operation. It is charac-

104

6502 INSTRUCTION SET

terized by the following truth table:

OORO0=0
OOR1=1
10R0 =1
10R1=1

The logical OR is characterized by the fact that if any one of the
operands is ‘“‘1’’, the result is to set any bit in a word to=*‘1"".

LDA #WORD
ORA #%00001111

Let us assume that WORD did contain ‘10101010 The final
value of the accumulator will be ‘10101111,

Exercise 4.3: What would happen if we were to use the instruction
ORA #%10101111?

Exercise 4.4: What is the effect of ORing with ‘“‘FF’’ hexadecimal?

EOR

EOR stands for “exclusive OR.” The exclusive OR differs from the
inclusive OR, that we have just described, in one respect: the result is “1”
only if one, and only one, of the operands is equal to “1.” If both operands
are equal to “1,” the normal OR would give a “1”’ result. The exclusive
OR gives a “0” result. The truth table is:

OEORO =0
OEOR1=1
1EORO0 =1
1EOR1=0

The exclusive OR is used for comparisons. If any bit is different,
the exclusive OR of two words will be non-zero. In addition, in the
case of the 6502, the exclusive OR is used to complement a word,
since there is no specific complement instruction. This is done by
performing the EOR of a word with all 1’s. The program appears
below:

LDA #WORD
EOR #%11111111

105

PROGRAMMING THE 6502

Let us assume that WORD did contain “10101010.” The final
value of the accumulator will be “01010101.” We can verify that
this is the complement of the original value.

Exercise 4.5: What is the effect of EOR #300?

Shift Operations

The standard 6502 is equipped with a left shift, called ASL
(arithmetic shift left), and a right shift, called LSR (logical shift
right). They will be described below.

However, the 6502 has only one rotate instruction, to the left
(ROL).

Warning: newer versions of the 6502 have an extra rotate instruction.
Check the manufacturer’s data to verify this fact. (ROR =rotate right)

Comparisons

Registers X, Y, A can be compared to the memory with instruc-
tions CPX, CPY, CMP.

Test and Branch

Since testing is almost exclusively performed on the flags regis-
ter, let us examine now the flags available in the 6502. The con-
tents of the flags register appear in Figure 4-2 below.

7 6 5 4 3 2 10
NIV|-[B|D|I]|Z]|C
SIGN BREAK | INTERRUPT | CARRY
(NEGATIVE)
OVERFLOW DECIMAL ZERO

Fig. 4-2: The Flags Register

106

6502 INSTRUCTION SET

Let us examine the function of the flags from left to right.
Sign

The N flag is identical to bit 7 of the accumulator, in most cases.
As a result, bit 7 of the accumulator is the only bit that one can
test conveniently with a single instruction. To test any other bit of
the accumulator, it is necessary to shift its contents. In all cases
where one wants to test the contents of the word quickly, the
preferred bit position will, therefore, be bit 7. This is why input/
output status bits are normally connected to position 7 of the
data-bus. When reading the status of an 1/0 device, one will simply
read the contents of the external status register into the ac-
cumulator and then test bit N.

The left-most bit is the sign bit, or negative bit. Whenever N is
1, it indicates that the value of a result is negative in two’s com-
plement representation. In practice, flag N is identical to bit 7 of a
result. It is set, or reset, by all data transfers and data processing
instructions.

The bit within the accumulator which is the next easiest to test
is bit Z (zero). However, it requires a right shift by 1 into the carry
bit so that it can be tested.

Instructions that set N are: ADC, AND, ASL, BIT, CMP, CPY,
CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY,
LSR, ORA, PLA, PLP, ROL, ROR, TAX, TAY, TXS, TXA, TYA.

Overflow

The role of the overflow has already been discussed in Chapter
3 in the section on arithmetic operations. It is used to indicate
that the result of the addition or subtraction of two’s complement
numbers might be incorrect because of an overflow from bit 6 to
bit 7, i.e., into the sign bit. A special correction routine must be
used whenever this bit is set. If one does not use two’s complement
representation, but direct binary, the overflow bit is equivalent to
a carry from bit 6 into bit 7.

107

PROGRAMMING THE 6502

A special use of this bit is made by the BIT instruction. A result
of this instruction is to set the “V” bit identical to bit 6 of the data
being tested.

The V flag is conditioned by ADC, BIT, CLV, PLP, RTI, SBC.

Break

This break flag is automatically set by the processor if an inter-
rupt is caused by the BRK command. It differentiates between a
programmed break and a hardware interrupt. No other user in-
struction will modify it.

Decimal

The use of this flag has already been discussed in Chapter 3 in
the section on arithmetic programs. Whenever D is set to “1”, the
processor operates in BCD mode, and whenever it is set to “0”, it
operates in binary mode. This flag is conditioned by four instruc-
tions: CLD, PLP, RTI, SED.

Interrupt

This interrupt-mask bit may be set explicitly by the programmer with
the SEI or PLP instructions, or by the microprocessor during the reset or
during an interrupt.

Its effect is to inhibit any further interrupt.

Instructions which condition this bit are: BRK, CLI, PLP, RTI,
SEI

Zero

The Z flag indicates, when set (equal to ‘‘1°’), that the result of
a transfer or an operation is a zero. It is also set by the comparison
instruction. There is no specific instruction which will set or clear

108.

6502 INSTRUCTION SET

the Z bit. However, the same result can easily be accomplished. In
order to set the zero bit, one can, for example, execute the follow-
ing instruction:

LDA #0

The Z bit is conditioned by many instructions: ADC, AND,
ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX,
INY, LDA, LDX, LDY, LSR, ORA, PLA, PLP, ROL, ROR, RTI,
SBC, TAX, TAY, TXA, TYA.

Carry

It has been seen that the carry bit is used for a dual purpose. Its
first purpose is to indicate an arithmetic carry or borrow during
arithmetic operations. Its second purpose is to store the bit ‘‘falling
out” of a register during the shift or rotate operations. The
two roles do not necessarily need be confused, and they are not on
larger computers. However, this approach saves time in the mi-
croprocessor, in particular for the implementation of a multiplica-
tion or a division. The carry bit can be set or cleared explicitly.

Instructions which will condition the carry bit are: ADC, ASL,
CLC, CMP, CPX, CPY, LSR, PLP, ROL, ROR, RTI, SBC, SEC.

Test and Branch Instructions

In the 6502, it is not possible to test every bit of the flags regis-
ter for one or zero. There are 4 bits which can be tested, and there are,
therefore, 8 different branch instructions. They are:

— BMI (branch on minus), BPL (branch on plus). These two
instructions, naturally, test the N bit.

— BCC (branch on carry clear) and BCS (branch on carry set):
they test C.

— BEQ (branch when result is null) and BNE (branch on
result not zero). They test Z.

— BVS (branch when overflow is set) and BVC (branch on
overflow clear). TheytestV.

109

PROGRAMMING THE 6502

These instructions test and branch within the same instruction.
All branches specify a displacement relative to the current in-
struction. Since the displacement field is 8 bits, this allows a
displacement of —128 to +127 (in two’s complement). The dis-
placement is added to the address of the first instruction following
the branch.

Since all branches are 2 bytes long, this results in an effective
displacement of —128 + 2 = —126 to +127 +2 = +129.

Two more unconditional instructions are available: JMP and
JSR. JMP is a jump to a 16-bit address. JSR is a subroutine call. It
jumps to a new address and automatically preserves the program
counter into the stack. Being unconditional, these two instructions
are usually preceded by a ‘‘test and branch’’ instruction.

Two returns are available: RTI, a return from interrupt, which
will be discussed in the interrupt section, and RTS, a return from
subroutine, which pulls a return address from the stack (and in-
crements it).

Two special instructions are provided especially for bit-testing
and for comparisons.

The BIT instruction performs an AND between the memory
location and the accumulator. One important aspect is that it does
not change the contents of the accumulator. The flag N is set to the
value of bit 7 of the location tested, while the V flagis set to
bit 6 of the memory location being tested. Finally, bit Z indicates
the result of the AND operation. Z is set to “1” if the result is “0”.
Typically a mask will be loaded in the accumulator, and successive
memory values will then be tested using the BIT instruction.
If the mask contains a single “1” for example, this will test
whether any given memory word does contain a “1” in that posi-
tion. In practice, this means that a mask should be used only
when one is testing memory bit locations “0” to “5”. The reader
will remember that bit locations “6” and “7” are automatically
stored respectively,in the “V” flag and in the “N” flag. They do not
need to be masked.

The CMP instruction will compare the contents of the memory
location to those of the accumulator by subtracting it from the ac-
cumulator. The result of the comparison will be indicated, there-

110

6502 INSTRUCTION SET

fore, by bits Z and N. One can detect equality, greater than, or less
than. The value of the accumulator is not changed by the compar- _
ison. CPX and CPY will compare to X and Y respectively.

Input/Output Instructions

There are no specialized input/output instructions in the 6502.

Control Instructions

Control instructions include specialized instructions to set or
clear the flags. They are: CLC, CLD, CLI, CLV, which clear re-
spectively bits C, D, I and V; and SEC, SED, SEI, which set re-
spectively in bits C, D, and L.

The BRK instruction is the equivalent of a software interrupt
and will be described in Chapter 7 in the interrupt section.

The NOP instruction is an instruction which has no effect and is
commonly used to extend the timing of a loop. Finally, two special
pins on the 6502 will trigger an interrupt mechanism, and this will
be explained in Chapter 6 on input/output techniques. It is a hard-
ware control facility (IRQ and NMI pins).

Let us now examine each instruction in detail.

In order to truly understand the various addressing modes, the reader
is encouraged to read the following section quickly the first time, and
then in more detail the second time after studying Chapter 5 on
Addressing Techniques.

111

PROGRAMMING THE 6502

PART 2- THE INSTRUCTIONS

(Ms6)

112

ABBREVIATIONS

Accumulator

Specified address (memory)
Status register

Stack pointer

Index register

Index register

Specified data
Hexadecimal

Program counter

Program counter high
Program counter low
Contents of top of stack
Logical or

Logical and

Exclusive or

Change

Receives the value of (assignment)
Contents of

Bit position 6 at address M

6502 INSTRUCTION SET
ADC Add with carry

Function: A<« (A) + DATA + C

[
011bbbO01 ADDR/DATA ADDR :

Format:

Description: ‘

Add the contents of memory address or literal to the ac-
cumulator, plus the carry bit. The result is left in the ac-
cumulator.

Remarks:

—ADC may operate either in decimal or binary mode: flags
must be set to the correct value
—To ADD without carry, flag C must be cleared (CLC).

Data Paths:

wex | 6D | &5 & m | & n 75
BYTES 3 2 2 3 3 2 2 2
CYCLES 4 3 2 4% | 4+ 6 5% 4
bbb on foor oo |1 fno Jooo oo |

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

T [ele[T T Telel

113

PROGRAMMING THE 6502

o
Instruction Codes:
T
ABSOLUTE 01101101 16-BIT ADDRESS
1
bbb= 011 HEX= 6D CYCLES= 4
ZERO-PAGE 01100101 ADDR
bbb= 001 HEX = 65 CYCLES= 3
IMMEDIATE 01101001 DATA
bbb= 010 HEX = 69 CYCLES = 2
. T
ABSOLUTE, X 0111110 16-BIT ADDRESS
1
bbb= 111 HEX = 7D CYCLES = 4*
T
ABSOLUTE, Y 01111001 16-8BIT ADDRESS
L
bbb:= 110 HEX = 79 CYCLES = 4*
(IND, X) 01100001 ADDR
bbb = 000 HEX = 61 CYCLES = 6
(IND),Y 01110001 ADDR
bbb = 100 HEX = 71 CYCLES = §*
ZERO-PAGE, X 01110101 ADDR
bbb= 101 HEX = 75 CYCLES == 4

114

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

6502 INSTRUCTION SET

AND Logical AND

Function: A« (A) A DATA

Formwe [| e]]
Description:

Perform the logical AND of the accumulator and specified data.
The result is left in the accumulator.

The truth table is: i
AM| o |
(4] 0 0
1 . (] 1

Data Paths:

.7/ 7

HEX 2D | 2 2 3D | 3¢ 2 3 35
BYTES 3 2 2 3 3 2 2 2
CYCLES, 4 3 2 4* | 4 6 5* 4
bbb o foo [ow | [no Joo [100 |00

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

0 1

o [[o]]

115

PROGRAMMING THE 6502

(3
Instruction Codes:
T
ABSOLUTE 00101101 16-BIT ADDRESS
1
bbb= 011 HEX= 2D CYCLES= 4
2ERO-PAGE 00100101 ADDR
bbb = 001 HEX = 25 CYCLES= 3
IMMEDIATE 00101001 DATA
bbb = 010 HEX = 29 CYCLES= 2
T
ABSOLUTE, X 00111101 16-BIT ADDRESS
1
bbb= 11 HEX = 3D CYCLES= 4*
T
ABSOLUTE, Y 00111001 16-BIT ADDRESS
N 1
bbb= 110 HEX = 39 CYCLES = 4*
(IND, X) 00100001 ADDR
bbb= 000 HEX = 21 CYCLES= 6
(IND),Y 0011001 ADDR
bbb = 100 HEX = 31 CYCLES ~ 5*
/ERO-PAGE, X 00110101 ADDR
bbb = 101 HEX - 35 CYCLES = 4

116

*: PLUS | CYCLE IF CROSSING PAGE BOUNDARY.

6502 INSTRUCTION SET

ASL Arithmetic shift left

IDDnDDnD =

o

Format: 000 bbb 10 ADDR

Description:

Move the contents of the accumulator or of the memory location
left by one bit position. 0 comes in on the right. Bit 7 falls into the
carry. The result is deposited in the source, i.e. either accumulator
or memory. '

Data paths: Ry -
oy S
e
Addressing Modes:
£/¢ & NS YAYEY S YEVI VY
éyﬁ“’f@f@*‘?‘?s@fﬁaf\
HEX OA | OE | 06 1€ [
8YTES ' 3 ? 3 2
crcies 2| 6 s 7 s
bbb 010 | on | oo m 100
Flags:

N v B D 2 C
o [| [|o]e]

117

PROGRAMMING THE 6502

.
Instruction Codes:
ACCUMULATOR 00001010
bbb=010 HEX= OA CYCLES= 2
T
ABSOLUTE 00001110 ADDRESS
1
bbb=011 HEX=- OE CYCLES= 6
ZERO-PAGE 000001 10 ADDR
bbb=001 HEX= 06 CYCLES= §
]
ABSOLUTE, X 00011110 ADDRESS
1
bbb=111 HEX= 1E CYCLES= 7
ZERO-PAGE, X 000101 10 ADDR
bbb=101 HEX= 16 CYCLES= 6

118

6502 INSTRUCTION SET

BCC Branch on carry clear
Function:
Go to specified address if C = 0
Format:
1001000 DISPLACEMENT
Description:

Test the carry flag. If C = 0, branch to the current address plus
the signed displacement (up to +127 or —128). If C = 1, take no
action. The displacement is added to the address of the first in-
struction following the BCC. This results in an effective dis-
placement of +129 to —126.

Data Paths:

PC ADDR1 l BCC
+12
NEXT ADDR1
+
FLAG
Addressing Mode:

Relative only:
HEX = 90, bytes = 2, cycles = 2 + 1 if branch succeeds
+ 2 if into another page

Flags:

(NO ACTION)

119

PROGRAMMING THE 6502

BCS Branch on carry set

Function:
Go to specified address if C = 1

Format: 10110000 DISPLACEMENT

Description:

Test the carry flag. If C = 1, branch to the current address plus
the signed displacement (up to +127 or —128). If C = 0, take no
action. The displacement is added to the address of the first instruc-
tion following the BCS. This results in an effective displacement of
+129 to —126.

Data Paths:
PC ADDRI BCS
+12
NEXT ADDR1
FLAG
Addressing Mode:
Relative only:

HEX = B0, bytes = 2, cycles = 2 +1 if branch succeeds
+2 if into another page

Flags:

(NOACTION)

120

6502 INSTRUCTION SET

BEQ Branch if equal to zero
Function:

Go to specified address if Z=1 (result = 0).
Format: 11110000 DISPLACEMENT
Description:

Test the Z flag. If Z = 1, branch to the current address plus the
signed displacement (up to +127 or —128). If Z = 0, take no
action.

The displacement is added to the address of the first instruction
following the BEQ. This results in an effective displacement of
+129 to —126.

Data Paths:

PC ADDR1 j BEQ

NEXT ADDR1

FLAG

Addressing Mode:

Relative only:
HEX = FO, bytes = 2, cycles = 2 +1 if branch succeeds
+2 if into another page

Flags:

[(TTITTT]

(NO ACTION)

121

PROGRAMMING THE 6502

BIT Compare memory bits with accumulator
Function:

Z<(A) A M) , N&(M7), V&=(M*)
Format: 00105100 ADDR -___._::Eti;f—__.-:_-}
Description:

The logical AND of A and M is performed, but not stored. The result
of the comparison is indicated by Z. Z = 1 if the comparison fails; 0
otherwise. In addition, bits 6 and 7 of the memory data are transferred
into V and N of the status register. It does not modify the contents of A.

Data Paths: A o — N e
G
L
DATA
M —n]
P
N, V, 2
AND
i BITS 6 AND 7
Addressing Modes:
F
e/ /888) S/8/ 8/ & ?f
e’f@”f;fﬁ#?é’ffs’\
HEX 2 24
BYTES 3 2
CYLLES 4 3
bbb on 001
Flags: N vV B D 1z ¢
Pofw] | | @] |
Instruction Codes:
ABSOLUTE L 00101100 I 16-8IT erDDIESS J
HEX= 2C CYCles= 4
ZERO-PAGE L 00100100 [ADDR]
HEX= 24 CYCLES= 3

122

6502 INSTRUCTION SET

BMI Branch on minus
Function:

Go to specified address if N = 1 (result < 0).
Format: 00110000 DISPLACEMENT
Description:

Test the N flag (sign). If N = 1, branch to the current address
plus the signed displacement (up to +127 or —128). IfN = 0, take
no action.

The displacement is added to the address of the first instruction
following the BMI. This results in an effective displacement of
+129 to —126.

Data Paths:
PC ADDR1 -l BMI
+12
NEXT ADDR1
FLAG
Addressing Mode:

Relative only:
HEX = 30, bytes = 2, cycles = 2 +1 if branch succeeds
+2 if into another page

Flags:

[TTTITT]

(NO ACTION)

123

PROGRAMMING THE 6502

BNE Branch on not equal to zero
Function:

Go to specified address if Z = 0 (result # 0).
Format: 11010000 DISPLACEMENT
Description:

Test the result (Z flag). If the result is not equal to 0 (Z = 0),
branch to the current address plus the signed displacement (up to
+127 to —128). If Z = 1, take no action.

The displacement is added to the address of the first instruction
following the BNE. This results in an effective displacement of
+129 to —126.

Data Paths:
PC ADDR1 —I BNE
+12
NEXT ADDR1
FLAG
Addressing Mode:

Relative only:
HEX = DO, bytes = 2, cycles = 2 +1 if branch succeeds
+2 if into another page

Flags:

(NO ACTION)

124

6502 INSTRUCTION SET

BPL Branch on plus
Function:

Go to specified address if N = 0 (result = 0).
Format: 00010000 DISPLACEMENT
Description:

Test the N flag (sign). If N = 0 (result positive), branch to the
current address plus the signed displacement (up to +127 or
—128). If N = 1, take no action.

The displacement is added to the address of the first instruction

following the BPL. This results in an effective displacement of
+129 to —126.

Data Paths:
PC ADDR1 I BPL
+12
NEXT ADDRI
FLAG
Addressing Mode:
Relative only:

HEX = 10, bytes = 2, cycles = 2 +1 if branch succeeds
+2 if into another page

Flags:

[(TTTTTT

(NO ACTION)

125

PROGRAMMING THE 6502

BRK Break
Function:
STACK (PC) + 2, STACK (P), PC ~=(FFFE,FFFF)
Format: 00000000
Description:

Operates like an interrupt: the program counter is pushed on
the stack, then the status register P. The contents of memory
locations FFFE and FFFF are then deposited respectively in PCL
and PCH. The value of P stored in the stack has the B flag set to 1,
to differentiate a BRK from an IRQ.

Important: unlike an interrupt, PC + 2 is saved. This may not
be the next instruction, and a correction may be necessary. This is
due to the assumed use of BRK to patch existing programs where BRK
replaces a 2-byte instruction. When debugging a program, BRK is gen-
erally used to cause exit to monitor. Then, BRK often replaces the first
byte of an instruction.

Data Paths:

Addressing Mode:
Implied only:
HEX =00 , byte = 1, cycles =7

Flags: N vV B D __i__7 ¢
HEEIEREN

Note: B is set in before P is pushed in the stack.

126

6502 INSTRUCTION SET

BVC Branch on overflow clear
Function:

Go to specified address if V = 0.
Format: 0101000 DISPLACEMENT
Description:

Test the overflow flag (V). If there is no overflow (V = 0), branch
to the current address plus the signed displacement (up to +127
or —128). If V = 1, take no action.

The displacement is added to the address of the first instruction
following the BVC. This results in an effective displacement of
+129 to —126.

Data Paths:
PC ADDRI j BvC
+12
NEXT ADDR1
+
FLAG
Addressing Mode:
Relative only:
Hex =50, bytes=2, cycles=2 +1 if branch succeeds
+2 if into another page
Flags:

(NO ACTION)

127

PROGRAMMING THE 6502

BVS Branch on overflow set
Function:

Go to specified address if V = 1.
Format: 01110000 DISPLACEMENT
Description:

Test the overflow flag (V). If an overflow has occurred (V=1),
branch to the current address plus the signed displacement (up to
+127 or —128). If V=0, take no action.

The displacement is added to the address of the first instruction

following the BVS. This results in an effective displacement of
+129 to —126.

Data Paths:
PC ADDRI j BVS
+12
NEXT ADDR1
b
Addressing Mode:
Relative only:
HEX =70, bytes=2, cycles=2 +1 if branch succeeds
+2 if into another page
Flags:

(TTTTTIT]

(NO ACTION)

128

6502 INSTRUCTION SET

CLC Clear carry

Function:
Cef

Format: 00011000

Description:
The carry bit is cleared. This is often necessary before an ADC.
Addressing Mode:

Implied only
HEX = 18, byte = 1, cycles= 2

Flags:

N \4 8 D 1

[(TTI 11117

129

PROGRAMMING THE 6502

CLD Clear decimal flag
Function:

D<@
Format: 11011000
Description:

The D flag is cleared, setting the binary mode for ADC and
SBC.

Addressing Mode:
Implied only:
HEX = D8, byte = 1, cycles= 2

Flags:

N v B

[T 12 1]

130

6502 INSTRUCTION SET

CLI Clear interrupt mask
Function:

j
Format: 01011000
Description:

The interrupt mask bit is set to 0. This enables interrupts. An
interrupt handling routine must always clear the I bit, or else
other interrupts may be lost.

Addressing Mode:
Implied only:
HEX = 58, byte= 1, cycles= 2

Flags:

131

PROGRAMMING THE 6502

CLV Clear overflow flag

Function:
Ve

Format:

10111000

Description:
The overflow flag is cleared.

Addressing Mode:
Implied only:
HEX = B8, byte =1, cycles = 2

Flags:

132

6502 INSTRUCTION SET

CMP Compare to accumulator
Function: Yo - ~<ontay
(A) — DATA — NZC:
-0t on -00
Format: 110bbb01 ADDR/DATA T ;I;D-R ----- J-;

Description:

The specified contents are subtracted from A. The result is not
stored, but flags NZC are conditioned, depending on whether the
result is positive, null or negative. The value of the accumulator
is not changed. Z is set by an equality, reset otherwise; N is set;
reset by the sign (bit 7), C is set when (A) = DATA. CMP is usual-
ly followed by a branch: BCC detects A < DATA, BEQ detects A
= DATA, BCS detects A > DATA, and BEQ followed by BCS

detects A > DATA.
Data Paths:
-----5
=
P M — DATA
Addressing Modes:
F/x S S)86 &) é
ff $18/5/¢/8/8/8) /54
HEX co cs co [0 D9 [«] [>1] DS
BYTES 3 2 2 3 3 2 2 2
CYCLES 4 3 2 4 4 6 5° 4
bbb o011} 001 | 010 111 110} 000 100 | 101

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

O [[T [ele

133

PROGRAMMING THE 6502

.
Instruction Codes:
T
ABSOLUTE 11001101 16-BIT ADDRESS
bbb= 01 HEX= CD CYCLES= 4
ZERO-PAGE 11000101 ADDR
bbb= 001 HEX= C5 CYCLES= 3
IMMEDIATE 11001001 DATA
bbb= 010 HEX= C9 CYCLES= 2
T
ABSOLUTE, X 1101101 16-BIT ADDRESS
1
bbb= 111 HEX= DD CYCLES= 4*
L]
ABSOLUTE, Y 11011001 16-BIT ADDRESS
1
bbb= 110 HEX= D9 CYCLES= 4*
(IND, X) 11000001 ADDR
bbb= 000 HEX= Cl CYCLES= 6
.(IND),Y 11010001 ADDR
bbb= 100 HEX= DI CYCLES= 5*
ZERO-PAGE, X 11010101 ADDR
bbb= 101 HEX= D5 CYCLES= 4

134

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

6502 INSTRUCTION SET

CPX Compare to register X
Function: +(X> DATA) - —(X<DATA)

X - DATA »NZC: [—— —
Format: 111gbbg ADDR/DATA T -A-D;R ----- j.:

Description:

The specified contents are subtracted from X. The result is not
stored, but flags NZC are conditioned, depending on whether the
result is positive, null or negative. The value of the accumulator
is not changed. CPX is usually followed by a branch: BCC detects X<
DATA, BEQ detects X=DATA, and BEQ followed by BCS detects
X>DATA. BCS detects X 2 DATA.

Data Paths:
X
<'r._ R
"""" q
[}
il
P M] DATA
Addressing Modes:
e 3'& & \g: 6"}& X A /A N é; /8
> S N S &
§§f°?§$$§§;$°?&3§
HEX EC E4 E0
BYIES 3 2 2
CYCLES 4 3 2
bb, n o0 00
Flags:

135

PROGRAMMING THE 6502

.
Instruction Codes:
L)
ABSOLUTE 11101100 16-BIT ADDRESS
1
bb= 11 HEX= EC CYCLES= 4
ZERO-PAGE 11100100 ADDR
bb= 01 HEX= E4 CYCLES= 3
IMMEDIATE 11100000 DATA
bb= 00 HEX= EO CYCLES= 2

136

6502 INSTRUCTION SET

CPY Compare to register Y
Function: +(Y>DATA) - —(Y < DATA)
(Y) - DATA =»NZC:
-01 on —-00
Format: 11006600 pooroata | A ;D_R— o .E
------------ 4

Description:

The specified contents are subtracted from Y. The result is not
stored, but flags NZC are conditioned, depending on whether the
result is positive, null or negative. The value of the accumulator
is not changed. CPY is usually followed by a branch: BCC detects
Y < data, BEQ detects Y = data, and BEQ followed by BCS
detects Y > data. BCS detects Y = data.

Data Paths:
Y
<: ity
————— |
T
[
P M —f DATA
Addressing Modes:
') ‘5 & & A * N A
/S /)S/s/F/x/ 2/ ¥/ s/ s/ E
§§£§9‘f§§§§§5 &/
HEX cc Cc4 co
bYIES 3 2 2
CYCLES| 4 3 2
bb! n 01 00
Flags:.

137

PROGRAMMING THE 6502

Instruction Codes:
L
ABSOLUTE 11001100 16-BIT ADDRESS
1
bb= 11 HEX= CC CYCLES= 4
ZERO-PAGE 11000100 ADDR
bb= 01 HEX= C4 CYCLES= 3
IMMEDIATE 11000000 DATA
bb= 00 HEX= CO CYCLES= 2

138

6502 INSTRUCTION SET

DEC Decrement
Function:
Me (M)-1
Format: 110bb110 ADDR T —-A;)D-R_—___-i
Description:

The contents of the specified memory address are decremented
by 1. The result is stored back at the specified memory address.

Data Paths:

DATA==DATA—1

Addressing Modes:
& 35 SRR é,‘." é,.* /8
> S S A IS
& g /& SN/ & £/ 5 $
& C S/)E)E)E/E/S/E/S/E/E
HEX CE [« DE D6
BYTES 3 2 3 2
CYCLES 6 5 7 6
- bb o | 00 n o 10
Flags:

N Vv 8

O [T 1Tel]

139

PROGRAMMING THE 6502

(]
Instruction Codes:
]
ABSOLUTE 11001110 ADDRESS
1
bb=01 HEX= CE CYCLES =
ZERO-PAGE 11000110 ADDR
bb=00 HEX= Cé CYCLES=
T
ABSOLUTE, X 1101110 ADDRESS
1
bb=11 HEX= DE CYCLES =
ZERO-PAGE, X 11010110 ADDR
bb=10 HEX= Dé CYCLES=

140

6502 INSTRUCTION SET

DEX Decrement X
Function:

X «-X)-1
Format: 11001010
Description:

The contents of X are decremented By 1. Allows the use of X as
a counter.

Data Paths:

X

N ~-——q

7 ~-—o -
Addressing Mode:

Implied only:
HEX = CA, byte= 1, cycles= 2

Flags:

o[[T [Tel]

141

PROGRAMMING THE 6502

DEY Decrement Y
Function: ,

Y <« (Y) -1
Format: 10001000
Description:

The contents of Y are decremented by 1. Allows the use of Y as
a counter.

Data Paths:

N ~——f

7 ~e—

Addressing Mode:
Implied only:
HEX = 88, byte = 1, cycles = 2

Flags:

N v B D !

OEEEEDN

142

6502 INSTRUCTION SET

EOR Exclusive—OR with accumulator
Function:

A<« (A) ¥ DATA
Format: 010bbb01 ADDR/DATA T -A;;R- T -i
Description:

The contents of the accumulator are exclusive —ORed with the
specific data. The truth table is:

Note: EOR with “-1” may be used to complement.
Data Paths: A
= (e

2 |

N7

.
Addressing Modes:
o vsoq— & « Ya_‘e N R A X ES «
S/s/s/E/8/s/s//8/E/&/§ &
SIS)E)S) S S 8
HEX o | 45 | @ 0 | 5 4 5 55
BYTES 3 2 2 3 3 2 2 2
CYCLES 4 3 2 4° 4 6 5 4
bbb on 001 010 m 1o 000 100 00

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

v

DEEEEON

143

PROGRAMMING THE 6502

.
Instruction Codes:
T
ABSOLUTE 01001101 16-BIT ADDRESS
bbb= 011 HEX= 4D CYCLES= 4
ZERO-PAGE 01000101 ADDR
bbb= 001 HEX= 45 CYCLES= 3
IMMEDIATE 01001001 DATA
bbb= 010 HEX= 49 CYCLES = 2
T
ABSOLUTE, X ool 16-81T ADDRESS
1
bbb= 111 HEX = 5D CYCLES= 4*
T
ABSOLUTE, Y 01011001 16-BIT ADDRESS
1
bbb= 110 HEX= 59 CYCLES = 4*
(IND, X) 01000001 ADDR
bbb = 000 HEX = 41 CYCLES= 6
(IND), Y 01010001 ADDR
bbb= 100 HEX =~ 51 CYCLES = 5*
ZERO-PAGE, X 01010101 ADDR
bbb = 101 HEX = 55 CYCLES = 4

144

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

6502 INSTRUCTION SET

INC Increment memory
Function:
M «-M™+1
Format; 111bb110 ADDR -j-::;{)é;_) _: -E
Description:

The contents of the specified memory location are incremented
by one, then redeposited into it.

Data Paths:

M —— DATA DATA==-DATA +1

+1

Addressing Modes:

HEX

BYTES 3 2 3 2

CcvCles, 6 s 7 6

bb| o [] n 10

Flags:

145

PROGRAMMING THE 6502

L]
Instruction Codes:
T
ABSOLUTE 1110110 ADDRESS
]
bb=01 HEX= EE CYCLES= 6
ZERO-PAGE 11100110 ADDR
bb=00 HEX= E6 CYCLES= 5
1]
ABSOLUTE, X 11 ADDRESS
1
bb=1 HEX= FE CYCLES= 7
ZERO-PAGE, X 1110110 ADDR
bb=10 HEX= Fé6 CYCLES= 6

146

6502 INSTRUCTION SET

INX Increment X
Function:

X X) +1
Format: 11101000
Description:

The contents of X are incremented by one. This allows the use
of X as counter.

Data Paths:

Addressing Mode:
Implied only:
HEX = E8, byte = 1, cycles = 2

Flags:

v 8 D |

OREEEON

147

PROGRAMMING THE 6502

INY Increment Y
Function:
Y= (Y)+ 1
Format:
11001000
Description:

The contents of Y are incremented by one. This allows the use
of Y as counter.

Data Paths:

Addressing Mode:
Implied only:
HEX =C8, byte=1, cycles=2

Flags:

D ! Z

O [[1 [e]]

148

6502 INSTRUCTION SET

JMP Jump to address
Function:

PC-<« ADDRESS
Format: 01601100 ADDRESS
Description: .

A new address is loaded in the program counter, causing a jump
to occur in the program sequence. The address specification may
be absolute or indirect.

Data Paths:

PC

ﬁ me
ADDRESS

(ABSOLUTE)
Addressing Modes:
g
o /5 /8 /oSS))&/ €
$15/8/8/8/6/¢/8/8/8/8/5/¢
HEX &« [
BYTES 3 3
CYCLES! 3 - 5
b o 1
Flags:
N \4 [} 0 | Y4 C

(NO EFFECT)

149

PROGRAMMING THE 6502

Instruction Codes:
I
ABSOLUTE 01001100 ADDRESS
1
b=0 HEX=4C CYCLES=3
Ll
INDIRECT 01101100 ADDRESS
i
b=1 HEX=6C CYCLES=5
P C IMP
— ADDRESS]
FINAL ADDRESS —
(INDIRECT)

150

6502 INSTRUCTION SET

JSR Jump to subroutine

Function:
STACK-= (PC) +2
PC<«- ADDRESS

Ll
Format: 00100000 ADDRESS

Description:

The contents of the program counter +2 are saved into the
stack. (This is the address of the instruction following the JSR).
The subroutine address is then loaded into PC. This is also called
a “subroutine CALL.”

Data Paths:

e ® P
> +2 > ----------
I S R S
7S 1 J STACK
@ ISR
l— - ADDR —
Addressing Mode:

Absolute only:
HEX =20, bytes=3, cycles=6

Flags:

(NO EFFECT)

151

PROGRAMMING THE 6502

LDA Load accumulator
Function:

A <« DATA
Format: 101bbb01 ADDR/DATA
Description:

The accumulator is loaded with new data.
Data Paths:

7

7222222

NA\\\

\

A

Addressing Modes:
& £ & & AN AN SN AP &
v S SR 5
158/ E/8)7/€/8/8/5/8 /¢
HEX AD Aﬁv A9 8D B? Al 8! 8s
BYTES 3 2 2 3 3 2 2 2
CYCLES, 4 3 2 4 4 6 5 4
bbb on 001 010 m no 000 |® 101
*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.
Flags:
N v B 2] 1 Z C
of [[| |of |

152

6502 INSTRUCTION SET

.
Instruction Codes:
T
ABSOLUTE 10101101 16-BIT ADDRESS
1
bbb= 011 HEX= AD CYCLES= 4
ZERO-PAGE 10100101 ADDR
bbb= 001 HEX= A5 CYCLES= 3
IMMEDIATE 10101001 DATA
bbb = 010 HEX = A9 CYCLES= 2
T
ABSOLUTE, X 101l 16-BIT ADDRESS
1
bbb = 111 HEX'= BD CYCLES= 4*
T
ABSOLUTE, Y 10111001 16-BIT ADDRESS
1
bbb = 110 HEX = B9 CYCLES= 4*
(IND, X) 10100001 ADDR
bbb = 000 HEX= Al CYCLES= 6
(IND),Y 10110001 ADDR
bbb = 100 HEX == Bl CYCLES = 5*
2ERO-PAGE, X 10110101 ADDR
bbb - 101 HEX = B5 CYCLES = 4

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

153

PROGRAMMING THE 6502

LDX Load register X
Function:
X<« DATA
Format: 101bbb10 pooroata | A ;;R— T -i
____________ h
Description:

Index register X is loaded with data from the specified address.
Data Paths:

};/////////////A X - |
i — 057

Addressing Modes:
s /5 / & & A ¥ &
& (59@ § s \‘éﬁv §+ e-’r §°\ ég & S :‘-‘
HEX 3 AE Ab A2 BE B6
BYTES 2 2 3
CLES 2 4*
00 000 m

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

v B D | 2 [«

O [T [Tel]

154

(3
Instruction Codes:
T
ABSOLUTE 10101110 16-BIT ADDRESS
bbb = 011 HEX = AE CYCLES = 4
ZERO-PAGE 10100110 ADDR
bbb = 001 HEX = A6 CYCLES = 3
IMMEDIATE 10100010 DATA
bbb = 000 HEX = A2 CYCLES = 2
T
ABSOLUTE, Y 1011110 16-BIT ADDRESS
L
bbb = 111 HEX - BE CYCLES = 4*
7ERO PAGE, Y 10111010 ADDR
bbb 110 HEX - B6 CYCIES = 4

6502 INSTRUCTION SET

“: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

155

PROGRAMMING THE 6502

LDY Load register Y
Function:
Y-« DATA
Format: 101bbb00 ADDR/DATA T -A-D;R_— B
Description:

Index register Y is loaded with data from the specified address.
Data Paths:

Addressing Modes:
£ & & = x EN
fﬁ;ﬁ§§§§§ff§§
HEX AC | As | A0 | BC B4
BYTES 3 2 2 3 4
CYCes 4 3 2 4* 4
bbb on 001 000 m 101

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

| 4 C

O [[T Tel]

156

6502 INSTRUCTION SET

Instruction Codes:
T
ABSOLUTE 10101100 16-BIT ADDRESS
|
bbb= 011 HEX= AC CYCLES= 4
ZERO-PAGE 10100100 ADDR
bbb =001 HEX= A4 CYCLES= 3
IMMEDIATE 10100000 DATA
bbb = 000 HEX= AO CYCLES =2
T
ABSOLUTE, X 10111100 16-BIT ADDRESS
1
bbb=111 HEX=BC CYCLES = 4*
ZERO-PAGE, X 10110100 ADDR
bbb =101 HEX= B4 CYCLES=4

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

157

PROGRAMMING THE 6502

LSR Logical shift right
Function: ¢—] 7 [6] s« |s|z2]1]3¢

C
Format: 010bbb10 - :I;J;/;;r: - —i- - —;;R______E
Description:

Shift the specified contents (accumulator or memory) right by
one bit position. A ‘“0’’ is forced into bit 7. Bit 0 is transferred to
the carry. The shifted data is deposited in the source, i.e., either
accumulator or memory.

Data Paths:

3.
BYTES ! 3 2 3 2
CYCLES 2 6 s 7 6
bbb o0 [o | o0l m 100

Flags:

N v 8 D]

el [11 Tele

158

6502 INSTRUCTION SET

Instruction Codes:
ACCUMULATOR 01010110
bbb=010 HEX =4A CYCLES=2
T
ABSOLUTE 01011110 ADDRESS
1
bbb=011 HEX = 4E CYCLES= 6
ZERO-PAGE 01001110 ADDR
bbb =001 HEX = 46 CYCLES=5
1
ABSOLUTE, X 01111110 ADDRESS
1
bbb=111 HEX = 5E CYCLES=7
ZERO-PAGE, X 01101110 ADDR
bbb=101 HEX =56 CYCLES= 6

159

PROGRAMMING THE 6502

NOP No operation
Function:

None
Format: 11101010
Déscription:

Does nothing for 2 cycles. May be used to time a delay loop or to
fill patches in a program.

Addressing Mode:
Implied only:
HEX = EA, byte = 1, cycles = 2

Flags:

[TITITT]

(NO ACTION)

160

6502 INSTRUCTION SET

ORA Inclusive OR with accumulator

Function:
A<« (A) VDATA

Format: 000bbbO1 ADDR/DATA

Description:
Performs the logical (inclusive) OR of A and the specified data.
The result is stored in A. May be used to force a “1” at selected bit

locations.
Truth table: o
0 0 1
1 1 1
Data Paths:

A

Z

Addressing Modes:
& g & & &/ S /A N ; & é?
$IS/E/E/E/5/8/8/8/8/8/5/é
HEX 3 00 05 09 0 19 01 " 15
BYTES 3 2 2 3 3 2 2 2
CYCLES| 4 3 2 4* | 4 6 5*| 4
bbb 011} 001 {010) 11| 110|000} 100 101

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

N Vv B D 1 2 ¢
o | [| lof |

161

PROGRAMMING THE 6502

.
Instruction Codes:
T
ABSOLUTE 00001101 16-BIT ADDRESS
1
bbb=011 HEX= 0D CYCLES= 4
ZERO-PAGE 00000101 ADDR
bbb = 001 HEX= 05 CYCLES= 3
IMMEDIATE 00001001 DATA
bbb= 010 HEX= 09 CYCLES =2
T
ABSOLUTE, X 00011101 16-BIT ADDRESS
1
bbb=111 HEX=1D CYCLES = 4*
T
ABSOLUTE, Y 00011001 16-BIT ADDRESS
1
bbb=110 HEX=19 CYCLES = 4*
(IND, X) 00000001 ADDR
bbb = 000 HEX = 01 CYCLES= 6
(IND),Y 00010001 ADDR
bbb =100 HEX=1 CYCLES = 5*
ZERO-PAGE, X 00010101 ADDR
bbb= 101 HEX =15 CYCLES = 4

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

162

6502 INSTRUCTION SET

PHA Push A

Function:
STACK- (A)
S« (S -1

Format: 01001000

Description:
The contents of the accumulator are pushed on the stack. The
stack pointer is updated. A is unchanged.

Data Path:

Addressing Mode:
Implied only:
HEX = 48, byte = 1, cycles = 3

Flags:

(NO EFFECT)

163

PROGRAMMING THE 6502

PHP Push processor status

Function:
STACK= (P)
S« (S) -1

Format: 00001000

Description:
The contents of the status register P are pushed on the stack.

The stack pointer is updated. A is unchanged.

Data Path:

N

QARG
P A R

s 7
//%?‘2//

s

Addressing Mode:
Implied only
Hex = 08, byte = 1, cycles= 3

Flags:

(NO EFFECT)

164

6502 INSTRUCTION SET

PLA Pull accumulator

Function:
A« (STACK)
S< (S) +1

Format: 01101000

Description:
Pop the top word of the stack into the accumulator. Increment
the stack pointer.

Data Paths:

Al %(j

Addressing Mode:
Implied only:
HEX = 68, byte = 1, cycles = 4

Flags:

N A

O [[T o]]

165

PROGRAMMING THE 6502

PLP Pull processor status from stack

Function:
P« (STACK)
S« (S) +1

Format: 00101000

Description:
The top word of the stack is popped (transferred) into the status
register P. The stack pointer is incremented.

Data Paths:

- STACK

Addressing Mode:
Implied only:
HEX = 28, byte = 1, cycles = 4

Flags:

Dopnpog

166

6502 INSTRUCTION SET

ROL Rotate left one bit
Function: -
r- i I I I I I R I
C
Format: 001bbb10 o —A—oo—n - I— -= -A;D;— - —-i
Description:

The contents of the specified address (accumulator or memory)
are rotated left by one position. The carry goes into bit 0. Bit 7

sets the new value of the carry. This is a 9-bit rotation.
Data Paths:

Addressing Modes:

S fé‘ & & A » A é'* é,-\ & é»‘(?
> /8 . AP 3 S§
& 99“9 S/ E)E)E)E/E/)5/ E/ &

HEX 2A % 26 3 36

BYTES ' 3 2 3 2

CYCLES 2 6 5 7 6

bbb 010 on 001 m 101

Flags:

D |

o[[11 Jelel

167

PROGRAMMING THE 6502

Instruction Codes:
ACCUMULATOR 00101010
bbb=010 HEX=2A CYCLES=2
T
ABSOLUTE 00101110 16 BIT-ADDRESS
1
bbb=011 HEX = 2E CYCLES=6
ZERO-PAGE 00100110 ADDR
bbb =001 HEX=26 CYCLES=5
T
ABSOLUTE, X 00111110 16 BIT-ADDRESS
1
bbb=111 HEX = 3E CYCLES= 7
ZERO-PAGE, X 00110110 ADDR
bbb=101 HEX=36 CYCLES= 6

168

6502 INSTRUCTION SET

ROR Rotate right one bit

Warning: This instruction may not be available on older 6502’s;
also,, it may exist but not be listed.

Function: —
7 6 5 4 3 2 1 1]
c 1
—————— e ey
Format: 011bbb10 ADDR | ADDR |
Description:

The contents of the specified address (accumulator or memory)
are rotated right by one bit position. The carry goes into bit 7. Bit 0
sets the new value of the carry. This is a 9-bit rotation.

Data Paths:

v

 — w—
el
] w—f o

Addressing Modes:
& £/« & s S xS &) S
$15)5/E/8/5)5 /8/8/ 8/ /5 E
R 69 & o \g’ L N § K S & E
$
HEX 6A L3) 7€ 76
BYTES 1 3 2 3 2
CYCLES| 2 6 5 7 6
bbb 010 on 001 m 0
Flags:

169

PROGRAMMING THE 6502

Instruction Codes:
ACCUMULATOR 01101010
bbb=010 HEX=6A CYCLES =2
1
ABSOLUTE 01101110 16 BIT-ADDRESS
1
bbb=011 HEX = 6E CYCLES= 6
ZERO-PAGE 01100110 ADDR
bbb =001 HEX = 66 CYCLES=5
I
ABSOLUTE, X o1111110 16 BIT-ADDRESS
1
bbb=111 HEX= 7E CYCLES=7
ZERO-PAGE, X 01110110 ADDR
bbb=101 HEX = 76 CYCLES= 6

170

6502 INSTRUCTION SET

RTI Return from interrupt

Function:

P <« (STACK)
S < (S) +1
PCL -« (STACK)
S - (S) +1
PCH <=~ (STACK)
S - (S) +1

Format: 01000000

Description:
Restore the status register P and the program counter (PC)
which had been saved in the stack. Adjust the stack pointer.

Data Paths:

]

DI

PCH

Addressing Mode:
Implied only:
HEX =40, byte =1, cycles =6

Flags:

[e]e[e[e]e[e]e]

171

PROGRAMMING THE 6502

RTS Return from subroutine

Function:
PCL = (STACK)
S =« (S)+1
PCH-= (STACK)
S = (S)+1
PC <« (PC+1)

Format: 01100000

Description:
Restore the program counter from the stack and increment it
by one. Adjust the stack pointer.

Data Paths:

S

I

PCL
PC

PCH

- i

Addressing Mode:
Implied only:
HEX = 60, byte =1, cycles = 6

Flags:

(TTTTTT]

(NO EFFECT)

172

6502 INSTRUCTION SET

SBC Subtract with carry
Function: o
A<« (A) —DATA -C (C is borrow)
Format: 1 1bbbor Comowa 1 soom
Description:

Subtract from the accumulator the data at the specified ad-
dress, with borrow. The result is left in A. Note: SEC is used for a
subtract without borrow.

SBC may be used in decimal or binary mode, depending on bit
D of the status register.

Data Paths:

s s ¢

HEX ED | e | e FD|r | B Al 5

BYTES 3 2 2 3 3 2 2 2 |
CYCLES! 4 3 2 4* | 4+ 6 5+ 4
bbb) on oo foo Jimn 1o [oo [0 |in

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

[o[e] [[[o]®]

173

PROGRAMMING THE 6502

.
Instruction Codes:
T
ABSOLUTE 11101101 16-BIT ADDRESS
\
bbb =011 HEX = ED CYCLES =4
ZERO-PAGE 11100101 ADDR
bbb = 001 HEX = E5 CYCLES =3
IMMEDIATE 11101001 DATA
bbb =010 HEX = E9 CYCLES = 2
I
ABSOLUTE, X o 16-BIT ADDRESS
1
bbb =111 HEX = FD CYCLES = 4*
T
ABSOLUTE, Y 111000 16817 ADDRESS
' 1
bbb=110 HEX = F9 CYCLES = 4*
(IND, X) 11100001 ADDR
bbb = 000 HEX = E1 CYCLES = 6
(IND),Y 11110001 ADDR
bbb =100 HEX = F1 CYCLES = 5¢
2ERO-PAGE, X 11110101 ADDR
bbb= 101 HEX = F5 CYCLES = 4

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

174

6502 INSTRUCTION SET

SEC Set carry
Function:

Cws1
Format: 00111000
Description:

The carry bit is set to 1. This is used prior to an SBC to perform
a subtract without carry.

Addressing Modes:
Implied only:
HEX = 38, byte = 1, cycles= 2

Flagsr N Vv 8 D 1z ¢

175

PROGRAMMING THE 6502

SED Set decimal mode
Function:
De1
Format:
11111000
Description:

The decimal bit of the status register is set to 1. When it is 0,
the mode is binary. When it is 1, the mode is decimal for ADC and
SBC.

Addressing Modes:
Implied only:
HEX=F8, byte=1, cycles=2

Flags: N v Lz«

(TTTTTIT]

176

6502 INSTRUCTION SET

SEI Set interrupt disable
Function:

] =1

Format: 01111000
Description:

The interrupt mask is set to 1. Used during an interrupt or a system
reset.

Addressing Modes:
Implied only:

HEX = 78, byte = 1, cycles = 2

Flags: N v 8 D Iz ¢

17

PROGRAMMING THE 6502

STA

Function:

M= (A)

Format:

Store accumulator in memory

100bbb01

Description:
The contents of A are copied at the specified memory location.
The contents of A are not changed.

Data Paths:

I
I
*) !
< 5
\\I
M /
.
Addressing Modes:
9 5 & & o A X 4 &
15158818 6 /8/8 /885 /F
g /5/ S
K v(_S'? f o f LS $ N § & S/ & N
HEX 8D 85 0 9 8 fN 95
BYTES 3 2 3 3 2 2 2
CYCLES 4 3 5 5 6 6 4
bbb on 00t m 10 000 100 101
Flags:

178

6502 INSTRUCTION SET

.
Instruction Codes:
.
ABSOLUTE 10001101 16-BIT ADDRESS
1
bbb= 011 HEX= 8D CYCLES=4
ZERO-PAGE 10000101 ADDR
bbb= 001 HEX= 85 CYCLES= 3
T
ABSOLUTE, X 10011101 16-BIT ADDRESS
1
bbb=111 HEX =9D CYCLES=5
T
ABSOLUTE, Y 10011001 16-BIT ADDRESS
1
bbb=110 HEX= 99 CYCLES= 5
(IND, X) 10000001 ADDR
bbb = 000 HEX = 81 CYCLES= 6
(IND),Y 10010001 ADDR
bbb =100 HEX =91 CYCLES = 6
ZERO-PAGE, X 10010101 ADDR
bbb = 101 HEX= 95 CYCLES= 4

179

PROGRAMMING THE 6502

STX Store X in memory
Function:

Me«-x
F orm at: 100bb110 ADDRESS I|
Description:

Copy the contents of index register X at the specified memory
location. The contents of X are left unchanged.

Data Paths:
X
Y 7%
Addressing Modes:
& & A
e/ /8¢ &/ x N ¥ A x &/ &
/S N ~N/ & &/ &/ &
& &S’" éy Ky \é? &/8/8 §° /S/E/E
X
HEX 3 86 9%
BYTFS 3 2 2
CYCLES 4 3 4
bh (1] 00 10
F L]
lags' N VvV B D I

[TTT]

(NO EFFECT)

L]

Instruction Codes:

T
ABSOLUTE I B 10001110] ADORESS
i

.bb =01 HEX = BE cveus 4

2ERO-PAGE L 10000110 ! ADDR]
bb=00 HEX 466 craies 3

2ERO PAGE, ¥ I 10010110 | ADDR |

bb=10 HEX = 96 CyCies 4

180

6502 INSTRUCTION SET

STY Store Y in memory
Function:
M« =
Format: 100bb100 ADDRESS i
Description:

Copy the contents of index register Y at the specified memory
location. The contents of Y are left unchanged.

Data Paths:
LSS e e — -
vy V00070 i
///// ¢ ——===
Pl
P
[
Jd L
\\ ’
'
\
Addressing Modes:
g’ & A
/5 /S8/s /) /s /2 /)T s/ &/ &
15/ 8/E)E/8/¢/8/8/8/5/8/¢
HEX 8C 84 94
BYTES 3 2 2
CYCLES 4 3 4
bb 01 00 10
Flags: N VvV B DO 1
(NO EFFECT)
Instruction Codes:
ABSOLUTE l 10001100 I ADD‘G[SS J
bb=0l HEX = 8C CYCLES= 4
26RO-PAGE r 10000100 l ADDR |
bb=00 HEX = 84 CYCLES= 3
ZERO-PAGE, X l 10010100 l ADDR |

bb=10 HEX= 94 CYCLEs = 4

181

PROGRAMMING THE 6502

TAX Transfer accumulator into X
Function:
X= (A)
Format: 10101010
Description:

Copy the contents of the accumulator into index register X. The
contents of A are left unchanged.

Data Paths:

X

77777777777

_

Addressing Mode:
Implied only:
HEX = AA, byte = 1, cycles = 2

Flags:

v 8

O [T 1 Tel]

182

6502 INSTRUCTION SET

TAY Transfer accumulator into Y
Function:
Y= (A)
Format: | 10101000 |
Description:

Transfer the contents of the accumulator into index register Y.
The contents of A are left unchanged.

Data Paths:

\

Z

N\
W\

a._ | 'a

NN

zZ
oy

Addressing Mode
Implied only:
HEX = A8, byte = 1, cycles = 2

Flags:

183

PROGRAMMING THE 6502

TSX Transfer S into X
Function:
X« (S)
Format:
10111010
Description:

The contents of the stack pointer S are transferred into index
register X. The contents of S are unchanged.

Data Paths:

T ////////////////

\\\\\\‘
\\\

Addressing Mode:
Implied only:
HEX = BA, byte = 1, cycles = 2

Flags:

O [T 1 Tel]

184

6502 INSTRUCTION SET

TXA Transfer X into accumulator
Function:
A< (X)
Format: | 10001010 |
Description:

The contents of index register X are transferred into the ac-
cumulator. The contents of X are unchanged.

Data Paths:

7

X A

NN

Addressing Mode:
Implied only:
HEX = 8A, byte = 1, cycles =2

Flags:

185

PROGRAMMING THE 6502

TXS Transfer X into S
Function:

S (X)
Format: { 10011010 |
Description:

The contents of index register S are transferred into the stack
pointer. The contents of X are unchanged.

| g

Implied only:
HEX = 9A, byte = 1, cycles = 2

Flags:

[(TITTIT1]

(NO ACTION)

186

6502 INSTRUCTION SET

TYA Transfer Y into A
Function:

A<= (Y)
Format: | 10011000 |
Description:

The contents of index register Y are transferred into the ac-
cumulator. The contents of Y are unchanged.

EE
Z/////////////////////////// ///

HEX = 98, byte =1, cycles = 2

Flags:

187

S
ADDRESSING TECHNIQUES

INTRODUCTION

This chapter will present the general theory of addressing, with
the various techniques which have been developed to facilitate
the retrieval of data. In a second section, the specific addressing
modes which are available in the 6502 will be reviewed, along
with their advantages and limitations, where they exist. Finally,
in order to familiarize the reader with the various trade-offs pos-
sible, an applications section will show possible trade-offs be-
tween the various addressing techniques by studying specific ap-
plication programs.

Because the 6502 has no 16-bit register, other than the program
counter, which can be used to specify an address, it is necessary
that the 6502 user understand the various addressing modes, and
in particular, the use of the index registers. Complex retrieval
modes, such as a combination of indirect and indexed, may be
omitted at the beginning stage. However, all the addressing
modes are useful in developing programs for this micro-
processor. Let us now study the various alternatives available.

ADDRESSING MODES

Addressing refers to the specification, within an instruction, of
the location of the operand on which the instruction will operate.
The main methods will now be examined.

188

IMPLICIT/IMPLIED

IMMEDIATE

DIRECT/SHORT

EXTENDED/ABSOLUTE

INDEXED

- Fig. 5-1: Addressing

ADDRESSING TECHNIQUES

7 0

OPCODEA | R

‘OPCODE

LITERAL

r LITERAL

| I g

OPCODE

SHORT ADDRESS

OPCODE

FULL 16-BIT

ADDRESS

OPCODE XREG

DISPLACEMENT

189

PROGRAMMING THE 6502

Implicit Addressing

Instructions which operate exclusively on registers normally
use implicit addressing. This is illustrated in Figure 5-1. An im-
plicit instruction derives its name from the fact that it does not
specifically contain the address of the operand on which it oper-
ates. Instead, its opcode specifies one or more registers, usually
the accumulator, or else any other register(s). Since internal reg-
isters are usually few in number (say a maximum of 8), this will
require a small number of bits. As an example, three bits within
the instruction will point to 1 out of 8 internal registers. Such in-
structions can, therefore, normally be encoded within 8 bits. This
is an important advantage, since an 8-bit instruction normally
executes faster than any two- or three-byte instruction.

An example of an implicit instruction for the 6502 is TAX which
specifies ‘‘transfer the contents of A to X.”

Immediate Addreésing

Immediate addressing is illustrated in Figure 5-1. The 8-bit
opcode is followed by an 8- or a 16-bit literal (a constant). This
type of instruction is needed, for example, to load an 8-bit value
to an 8-bit register. If the microprocessor is equipped with 16-bit
registers, it may be necessary to load 16-bit literals. This depends
upon the internal architecture of the processor. An example of an
immediate instruction is ADC #0.

The second word of this instruction contains the literal “0”’,
which is added to the accumulator.

Absolute Addressing

Absolute addressing refers to the way in which data is usually
retrieved from memory, where an opcode is followed by a 16-bit
address. Absolute addressing, therefore, requires 3-byte instruc-
tions. An example of absolute addressing is STA $1234.

It specifies that the contents of the accumulator are to be stored
at the memory location ‘1234’ hexadecimal.

The disadvantage of absolute addressing is to require a 3-byte
instruction. In order to improve the efficiency of the microproces-
sor, another addressing mode may be made available, where only
one word is used for the address: direct addressing.

190

ADDRESSING TECHNIQUES

Direct Addressing

In this addressing mode, the opcode is followed by an 8-bit
address. This is illustrated in Figure 5-1. The advantage of this
approach is to require only 2 bytes instead of 3 for absolute ad-
dressing. The disadvantage is to limit all addressing within this
mode to addresses 0 to 255. This is page 0. This is also called
short addressing, or 0-page addressing. Whenever short addressing
is available, absolute addressing is often called extended addressing
by contrast.

Relative Addressing

Normal jump or branch instructions require 8 bits for the op-
code, plus the 16-bit address which is the address to which the
program has to jump. Just as in the preceding example, this has
the inconvenience of requiring 3 words, i.e., 3 memory cycles. To
provide more efficient branching, relative addressing uses only a
two-word format. The first word is the branch specification,
usually along with the test it is implementing. The second word is
a displacement. Since the displacement must be positive or nega-
tive, a relative branching instruction allows a branch forward to
128 locations (7-bits) or a branch backwards to 128 locations (plus
or minus 1, depending on the conventions). Because most loops
tend to be short, relative branching can be used most of the time
and results in significantly improved performance for such short
routines. As an example, we have already used the instruction
BCC, which specifies a “branch on carry clear” to a location
within 127 words of the branch instruction.

Indexed Addressing

Indexed addressing is a technique specifically useful to access
successively the elements of a block or of a table. This will be
illustrated by examples later in this chapter. The principle of
indexed addressing is that the instruction specifies both an index
register and an address. In the most general scheme, the contents
of the register are added to the address to provide the final ad-
dress. In this way, the address could be the beginning of a table in
the memory. The index register would then be used to access
successively all the elements of the table in an efficient way. In
practice, restrictions often exist and may limit the size of the

191

PROGRAMMING THE 6502

index register, or the size of the address or displacement field.

Pre-indexing and Post-indexing

Two modes of indexing may be distinguished. Pre-indexing is
the usual indexing mode where the final address is the sum of a
displacement or address and the contents of the index register.

Post-indexing treats the contents of the displacement field like
the address of the actual displacement, rather than the displace-
ment itself. This is illustrated in Figure 5-2. In post-indexing, the
final address is the sum of the contents of the index register plus
the contents of the memory word designated by the displacement
field. This feature utilizes, in fact, a combination of indirect ad-
dressing and pre-indexing. But we have not defined indirect ad-
dressing yet, so let us do that now.

PAGE ZERO Y (index)
[o=]
promemms POINTER wweemet +
MEMORY
POINTER =BASE
FINAL
168IT
ADDRESS
DATAN

Fig. 5-2: Indirect Post-iIndexed Addressing

192

ADDRESSING TECHNIQUES

Indirect Addressing

We have already seen the case where two subroutines may wish
to exchange a large quantity of data stored in the memory. More
generally, several programs, or several subroutines, may need ac-
cess to a common block of information. To preserve the generality
of the program, it is desirable not to keep such a block at a fixed
memory location. In particular, the size of this block might grow
or shrink dynamically, and it may have to reside in various
areas of the memory, depending on its size. It would, therefore,
be impractical to try to have access to this block using absolute
addresses.

The solution to this problem lies in depositing the starting ad-
dress of the block at a fixed memory location. This is analogous
to a situation in which several persons need to get into a house,

INSTRUCTION MEMORY
OPCODE
INDIRECT (A1) FINAL
ADDRESS A ADDRESS (A:)
A DATA

Fig. 5-3: Indirect Addressing

193

PROGRAMMING THE 6502

and only one key exists. By convention, the key to the house
will be hidden under the mat. Every user will then know where to
look (under the mat) to find the key to the house (or, perhaps, to
find the address of a scheduled meeting, to have a more correct
analogy). Indirect addressing, therefore, uses an 8-bit opcode fol-
lowed by a 16-bit address. Simply, this address is used to retrieve
a word from the memory. Normally, it will be a 16-bit word (in our
case, two bytes) within the memory. This is illustrated by Figure
5-3. The two bytes at the specified address, Al, contain A2. A2 is
then interpreted as the actual address of the data that one wishes
to access.

Indirect addressing is particularly useful any time that pointers
are used. Various areas of the program can then refer to these
pointers to access conveniently and elegantly a word or a block of
data.

Combinations of Modes

The above addressing modes may be combined. In particular, it
should be possible in a completely general addressing scheme to
use many levels of indirection. The address A2 could be inter-
preted as an indirect address again, and so on.

Indexed addressing can also be combined with indirect access.
That allows the efficient access to word n of a block of data, pro-
vided one knows where the pointer to the starting address is.

We have now become familiar with all usual addressing modes
that can be provided in a system. Most microprocessor systems,
because of the limitation on the complexity of an MPU, which
must be realized within a single chip, do not provide all possible
modes but only a small subset of these. The 6502 provides an
unusually large subset of possibilities. Let us examine them now.

6502 ADDRESSING MODES
Implied Addressing (6502)

Implied addressing is used by a single byte instruction which
operates on internal registers. Whenever implicit instructions
operate exclusively in internal registers, they require only two
clock cycles to execute. Whenever they access memory, they re-
quire three cycles.

Instructions which operate exclusively inside the 6502

194

ADDRESSING TECHNIQUES

are: CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, SEC, SED,
SEI, TAX, TAY, TSX, TXA, TXS, TYA.

Instructions which require memory access are: BRK, PHA,
PHP, PLA, PLP, RTI, RTS.

These instructions have been described in the preceding chap-
ter, and their mode of operation should be clear.

Immediate Addressing (6502)

Since the 6502 has only 8-bit working registers (the PC is not a
working register), immediate addressing in the case of the 6502 is
limited to 8-bit constants. All instructions in immediate addressing
mode are, therefore, two bytes in length. The first byte contains
the opcode, and the second byte contains the constant or literal
which is to be loaded in a register or used in conjunction with one
of the registers for an arithmetic or logical operation.

Instructions using this addressing mode are: ADC, AND, CMP,
CPX, CPY, EOR, LDA, LDX, LDY, ORA, SBC.

Absolute Addressing (6502)

By definition, absolute addressing requires three bytes. The
first byte is the opcode and the next two bytes are the 16-bit
address specifying the location of the operand. Except in the case
of a jump absolute, this address mode requires four cycles.

Instructions which may use absolute addressing are: ADC,
AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR,
LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY.

Zero-Page Addressing (6502)

By definition zero-page addressing requires two bytes: the first
one is for the opcode; the second one is for the 8-bit, or short
address.

Zero-page addressing requires three cycles. Because zero-page
addressing offers significant speed advantages as well as shorter
code, it should be used whenever possible. This requires careful
memory management by the programmer. Generally speaking,
the first 256 locations of memory may be viewed as the set of
working registers for the 6502. Any instruction will essentially
execute on these 256 ‘‘registers’ in just three cycles. This space
should, therefore, be carefully reserved for essential data that

195

PROGRAMMING THE 6502

needs to be retrieved at high speed.

Instructions which can use zero-page addressing are those
which can use absolute addressing, except for JMP and JSR
(which require a 16-bit address).

The list of legal instructions is: ADC, AND, ASL, BIT, CMP,
CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA,
ROL, ROR, SBC, STA, STX, STY.

Relative Addressing (6502)

By definition, relative addressing uses two bytes. The first one
is a jump instruction, whereas the second one specifies the dis-
placement and its sign. In order to differentiate this mode from
the jump instruction, they are here labeled branches. Branches,
in the case of the 6502, always use the relative mode. Jumps
always use the absolute mode (plus, naturally, the other sub-
modes which may be combined with those, such as indexed and
indirect). From a timing standpoint, this instruction should be
examined with caution. Whenever a test fails, i.e., whenever there
is no branch, this instruction requires only two cycles. This is be-
cause the next instruction to be executed is pointed to by the pro-
gram counter. However, whenever the test succeeds, i.e., whenever
the branch must take place this instruction requires three cycles: a
new effective address must be computed. The updating of the
program counter requires an extra cycle. However, if a branch
occurs through a page boundary, one more updating is necessary
for the program counter, and the effective length of the instruc-
tion becomes four cycles.

From a logical standpoint, the user does not need to worry about
crossing a page boundary. The hardware takes care of it. However,
because an extra carry or borrow is generated whenever one crosses
a page boundary, the execution time of the branch will be changed.
If this branch was part of an exact timing loop, caution must be
exercised.

A good assembler will normally tell the programmer at the
time the program is assembled that a branch is crossing a page
boundary, in case timing might be critical.

Whenever one is not sure whether the branch will succeed, one
must take into consideration the fact that sometimes the branch

196

ADDRESSING TECHNIQUES

will require two cycles, and sometimes three. Often an average
time is computed.

The only instructions which implement relative addressing are the
branch instructions. There are 8 branch instructions which test flags
within the status register for value ‘0’ or ‘‘1”’. The list is: BCC,
BCS, BEQ, BMI, BNE, BPL, BVC, BVS.

Indexed Addressing (6502)

The 6502 does not provide a completely general capability, but
only a limited one. It is equipped with two index registers. How-
ever, these registers are limited to 8 bits. The contents of an index
register are added to the address field of the instruction. Usually,
the index register is used as a counter in order to access ele-
ments of a block or a table successively. This is why specialized
instructions are available to increment or decrement each one of
the index registers separately. In addition, two specialized in-
structions exist to compare the contents of the index registers
against a memory location, an important facility for the effective
use of the index registers to test against limits.

In practice, because most user tables are normally shorter than
256 words, the limitation of the index registers to 8 bits is usually
not a significant limitation.

The indexed addressing mode can be used not only with regular
absolute addressing, i.e., with 16-bit address fields, but also with
the zero-page addressing mode, i.e., with 8-bit address fields.

There is only one restriction. Register X can be used with both
types of addressing. However, register Y allows only absolute in-
dexed addressing and not zero-page indexed addressing (except. for
L.DX and STX instructions, which can be modified by register Y).

Absolute indexed addressing will require four cycles, unless the
page boundary is being crossed, in which case five cycles will be
required.

Absolute indexed instructions can use either registers X or Y to
provide the displacement field. The list of instructions which may
use this mode are:

— with X: ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY,
LSR, ORA, ROL, ROR, SBC, STA, (not STY).

197

PROGRAMMING THE 6502

—with Y: ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC, STA
(not ASL, DEC, LSR, ROL, ROR).

In the case of zero-page indexed addressing, register X is the
legal displacement register, except for LDX and STX. Legal in-
structions are: ADC, AND, ASL, CMP, DEC, EOR, INC, LDA,
LDY, LSR, ORA, ROL, ROR, SBC, STA, STY.

Indirect Addressing (6502)

The 6502 does not have a fully general indirect addressing
capability. It restricts the address field to 8 bits. In other words,
all indirect addressing uses the sub-mode of zero page addressing.
The effective address on which the opcode is to operate is then the
16 bits specified by the zero-page address of the instruction. Also,
no further indirection may occur. This means that an address
retrieved from page zero must be used as is, and cannot be used as
a further indirection.

Finally, all indirect accesses must be indexed, except for JMP.

For fairness, it should be noted that very few microprocessors
provide any indirect addressing at all. Further, it is possible to
implement a more general indirect addressing using a macro
definition.

Two modes of indirect addressing are possible: (pre) indexed indirect
addressing, and indirect indexed addressing (post-indexed), except
with JMP, which uses pure indirect.

Indexed Indirect Addressing

This mode adds the contents of index register X to the zero-page
address to retrieve the final 16-bit address. This is an efficient way to
retrieve one of several possible data pointed to by pointers whose
number is contained in index register X. This is illustrated in Figure
5-4.

In this illustration, page zero contains a table of pointers. The
first pointer is at the address A, which is part of the instruction. If
the contents of X are 2N, then this instruction will access pointer
number N of this table and retrieve the data it is pointing to.

Indexed indirect addressing requires 6 cycles. It is naturally
less efficient time-wise than any direct addressing mode. Its ad-
vantage is the flexibility which may result in coding, or the overall
speed improvement.

198

ADDRESSING TECHNIQUES

11—
OPCODE(X) X PAGE ¢
ADDRESS A [N]
ADDRESS A:

ENTRY#N . POINTER
= 16 BIT ADDRESS

REST OF
MEMORY

DATA -

Fig. 5-4: Pre-Indexed Indirect Addressing

Permissible instructions are: ADC, AND, CMP, EOR, LDA,
ORA, SBC, STA.

Indirect Indexed Addressing

This corresponds to the post-indexing mechanism which has
been described in the preceding section. There, the indexing is
performed after the indirection, rather than before. In other
words, the short address which is part of the instructions is used
to access a 16-bit pointer in page zero. The contents of index
register Y are then added as a displacement to this pointer. The
final data are then retrieved. (see Fig. 5-2.)

In this case, the pointer contained in page zero indicates the
base of a table in the memory. Index register Y provides a dis-
placement. It is a true index within a table. This instruction is
particularly powerful for referring to the nth element of a table,
provided that the start address of the table is saved in page zero.

199

PROGRAMMING THE 6502

It can do so in just two bytes.

Legal instructions are: ADC, AND, CMP, EOR, LDA, ORA, SBC,
STA.

Exception: Jump Instruction.

The jump instruction may use indirect absolute. It is the only
instruction that may use this mode.

USING THE 6502 ADDRESSING MODES
Long and Short Addressing

We have already used branch instructions in various programs
that we have developed. They are self explanatory. One interest-
ing question is: what can we do if the permissible range for
branching is not sufficient for our needs? One simple solution is to
use a so-called long branch. This is simply a branch to a location
which contains a jump specification:

BCC +3 BRANCH TO CURRENT ADDRESS
+3 IF C CLEAR

JMP FAR OTHERWISE JUMP TO FAR

(NEXT INSTRUCTION)

The two-line program above will result in branching to location
FAR whenever the carry is set. This solves our long branch
problem. Let us therefore now consider the more complex addres-
sing modes, i.e. indexing and indirection.

Use of indexing for sequential block accesses

Indexing is primarily used to address successive locations
within a table. The restriction is that the maximum displacement
must be less than 256 so that it can reside in an 8-bit index
register. .

We have learned to check for the character **’. Now we will
search a table of 100 elements for the presence of a **’. The start-
ing address for this table is called BASE. The table has only 100
elements. It is less than 256 and we can use an index register. The
program appears below:

200

ADDRESSING TECHNIQUES

SEARCH LDX #0
NEXT LDA BASE, X
CMP #*
BEQ STARFOUND
INX
CPX #100
BNE NEXT
NOTFOUND
STARFOUND

The flowchart for this program appears in Figure 5-5. The equiva-
lence between the flowchart and the program should be verified.
The logic of the program is quite simple. Register X is used to
point to the element within the table. The second instruction of
the program:

NEXT LDA BASE, X

uses absolute indexed addressing. It specifies that the accumu-
lator is to be loaded from the address BASE (16-bit absolute ad-
dress) plus contents of X. At the beginning, the contents of X are
“0.” The first element to be accessed will be the one at address
BASE. It can be seen that after the next iteration, X will have the
value “1,” and the next sequential element of the table will be
accessed, at address BASE + 1.

The third instruction of the program, CMP #‘* compares the value
of the character which has been read in the accumulator with the code
for “*.”” The next instruction tests the results of the comparison. If a
match has been found, the branch occurs to the label STARFOUND:

BEQ STARFOUND

Otherwise, the next sequential instruction is executed:
INX

201

PROGRAMMING THE 6502

The index counter is incremented by 1. We find by inspecting the
bottom of the flow-chart of Figure 5.5 that the value of our index
register at this point must be checked to make sure that we are
not going beyond the bounds of the table (here 100 elements).
This is implemented by the following instruction:

CPX #100

INITIALIZE
TO ELEMENT 0

[

READ NEXT
ELEMENT

YES
@ STARFOUND

NO

POINTTO
NEXT ELEMENT

No LAST ELEMENT?

YES

NOT FOUND

Fig. 5-6: Character Searching Table

This instruction compares register X to the value $100. If the test
fails we must again fetch the next character. This is what occurs
with:

BNE NEXT

This instruction specifies a branch to the label NEXT if the test
has failed (the second instruction in our program). This loop will
be executed as long as a “*” is not found, or as long as the value
“100” is not reached in the index. Then the next sequential in-

202

ADDRESSING TECHNIQUES

struction to be executed will be “NOT FOUND”. It corresponds to
the case where a “*” has not been found.

The actions taken for “*” found and not found are irrelevant
here and would be specified by the programmer.

We have learned to use the indexed addressing mode to
access successive elements in a table. Let us now use this new
skill and slightly increase the difficulty. We will develop an im-
portant utility program, capable of copying a block from one area
of the memory into another. We will initially assume that the
number of the elements within the block is less than 256 so that
we can use index register X. Then we will consider the general
case where the number of elements in the block is greater than
256.

A Block Transfer Routine for less than 256 elements

We will call “NUMBER?” the number of elements in the block to
be moved. . The number is assumed to be less than 256. BASE is
the base address of the block. DESTINATION is the base of the
memory area where it should be maved. The algorithm is quite simple:
we will move a word at a time, keeping track of which word we are
moving by storing its position in index register X. The program
appears below:

| LDX #NUMBER
NEXT LDA BASE, X
STA DEST, X
DEX
BNE NEXT

Let us examine it:
LDX # NUMBER

This line of the program loads the number N of words to be trans-
ferred in the index register. The next instruction loads word #N of
the block within the accumulator and the third instruction depo-
sits it into the destination area. See Figure 5-6.

CAUTION: this program will work correctly only if the base
pointer is assumed to point just below the block, just like the
destination register. Otherwise a small adjustment to this
program is needed.

203

PROGRAMMING THE 6502

After a word has been transferred from the origin to the desti-
nation area, the index register must be updated. This is per-
formed by the instruction DEX, which decrements it. Then the
program simply tests whether X has decremented to O. If so, the
program terminates. Otherwise, it loops again by going back to
location NEXT.

You will notice that when X = 0, the program does not loop.
Therefore, it will not transfer the word at location BASE. The last
word to be transferred will be at BASE+1. This is why we have
assumed that the base was just below the block.

Exercise 5.1: Modify the progmm above, assuming that
BASE and DEST point to the first entry in the block.

This program also illustrates the use of loop counters. You will
notice that X has -been loaded with the firnal value, then decre-
mented and tested. At first sight, it might seem simpler to start
with “0” in X, and then increment it until it reaches the maxi-
mum value. However, in order to test whether X has attained its
maximum value, one extra instruction would be needed (the com-
parison instruction). This loop would then require 5 instructions
instead of 4. Since this transfer program will normally be used for
large numbers of words, it is important to reduce the number of
instructions for the loop. This is why, at least for short loops, the
index register is normally decremented rather than incremerted.

A Block Transfer Routine (more than 256 elements)

Let us now consider the general case of moving a block which
may contain more than 256 elements. We can no longer use a
single index register as 8 bits do not suffice to store a number
greater than 256. The memory organization for this program is
illustrated in Figure 5-7. The length of the memory-block to be
transferred requires 16 bits, and therefore is stored in memory.
The high-order part represents the number of 256-word blocks:
“BLOCKS”. The rest is called “REMAIN” and is the number of
words to be transferred after all the blocks have been transferred.
The address for the source and the destination will be memory
locations FROM and TO. Let us first assume that REMAIN is

204

ADDRESSING TECHNIQUES

BASE ——w=1

TRANSFER

DEST —=|

DESTINATION BLOCK

Fig. 5-6: Memory Organization for Block Transfer

PAGE 2

rom-~1 2 %

10 56

MEMORY

ARRIVAI. AREA %

Fig. 5-7: Memory Map for General Block Transfer

205

PROGRAMMING THE 6502

zero, i.e., that we are transferring 256 word blocks. The program
appears below:

LDA #SOURCELO
STA FROM

LDA #SOURCEHI

STA FROM +1 STORE SOURCE ADDRESS

LDA #DESTLO
STA TO

LDA #DESTHI

STA TO+1 STORE DEST ADDRESS
LDX #BLOCKS HOW MANY BLOCKS
LDY #0 BLOCK SIZE

NEXT LDA (FROM),Y READ ELEMENT
STA (TO), Y TRANSFER IT

DEY UPDATE WORD POINTER
BNE NEXT = FINISHED?
NEXBLK INC FROM+1 INCREMENT BLOCK POINTER
INC TO+1 SAME
DEX BLOCK COUNTER
BMI DONE
BNE NEXT
LDY #REMAIN
BNE NEXT

The 16-bit source address is stored by the first four instructions at
memory address “FROM.” The next four instructions do the
same thing for the destination, which is stored at address “TO”.
Since we have to transfer a number of words greater than 256, we
will simply use two 8-bit index registers. The next instruction
loads register X with the number of blocks to be transferred. This
is instruction 9 in the program. The next instruction loads the
value zero in index register Y in order to initialize it for the
transfer of 256 words. We will now use indexed indirect address-
ing. It should be remembered that indexed indirect will result
first in an indirection within page zero, then an indexed access to
the 16-bit address specified by the index register. Look at the
program:

NEXT LDA (FROM), Y

The instruction loads the accumulator with the contents of the
memory location whose address is the source plus the index regis-
ter Y’s contents. Look at Figure 5-7 for the memory map. Here,
the content of register Y is initially 0. “A” will therefore be loaded
from memory address “SOURCE.” Note that here, unlike in our

206

ADDRESSING TECHNIQUES

previous example, we assume that “SOURCE” is the address of
the first word within the block.

Using the same technique, the next instruction will deposit the
contents of the accumulator (the first word of the block we want to
transfer) at the appropriate destination location:

STA (TO), Y

Just as in the preceding case, we simply decrement the index
register, then we loop 256 times. This is implemented by the
next two instructions:

DEY
BNE NEXT

Caution: a programming trick is used here for compact pro-
gramming. The alert reader will notice that the index register Y
is decremented. The first word to be transferred will, therefore, be
the word in position 0. The next one will be word 255. This is
because decrementing 0 yields all 1’s in the register (or 255). The
reader should also ascertain that there is no error. Whenever
register Y decrements to 0, a transfer will not occur. The next
instruction to be executed will be: NEXBLK. Therefore, exactly
256 words will have been transferred. Clearly this trick could
have been used in the previous program to write a shorter pro-
gram.

Once a complete block has been transferred, it is simply a mat-
ter of pointing to the next page within our original block and our
destination block. This is accomplished by adding “1” to the
higher order part of the address for source and destination. This is
performed by the next two instructions in the program:

NEXBLK INC FROM+1
INC TO+1

After having incremented the page pointer, we simply check
whether or not we should transfer one more block by decrement-
ing the block counter contained in X. This is performed by:

DEX

If all blocks have been transferred, we exit from the program by
branching to location DONE:

207

PROGRAMMING THE 6502

BMI DONE

Otherwise, we have two possibilities: 4Either we have not de-
cremented to O or else we have exactly decremented to zero. If we
have not yet decremented to 0, we branch to location NEXT:

BNE NEXT

If we have decremented exactly to 0, we still have to transfer
the words specified by REMAIN. This is the last part of our
transfer. This is accomplished by:

LDY #REMAIN

which loads index Y with the transfer count.
We then branch back to location NEXT:

BNE NEXT

‘The reader should ascertain that, during this last loop where
the branch instruction to NEXT will be executed, the next time
we re-enter NEXBLK, we will, indeed, exit for good from this
program. This is because the index X had the value 0 prior to
entering NEXBLK. The third instruction of NEXBLK will
change it to —1, and we will exit to DONE.

Adding Two Blocks

This example will provide a simple illustration of the use of an
index register for the addition of two blocks of less than 256
elements. Then, the next program will make use of the indirect
indexed feature to address blocks whose address is known to re-
side at the given location, but whose actual absolute address is
not known. The program appears below:

BLKADD LDY #NBR -1 ———LOAD COUNTER

NEXT CLC
LDA PTR1,Y ———READ NEXT ELEMENT
ADC PTR2,Y ADD THEM
STA PTIR3,Y STORE RESULT
DEY DECREMENT COUNTER
BPL NEXT FINISHED? ‘

Index Y is used as an index counter and is loaded with the
number of elements minus one. We assume that pointer PTR1
points to the first element of Block 1, PTR2 to the first element of

208

ADDRESSING TECHNIQUES

Block 2, and PTR3 points to the destination area where the re-
sults should be stored.

The program is self-explanatory. The last element of Block 1 is
read in the accumulator, then added to the last element of Block
2. It is then stored at the appropriate location of Block 3. The next
sequential element is added, and so on.

Same Exercise Using Indexed Indirect Addressing

We assume here that the addresses PTR1, PTR2, PTR3 are not
known initially. However, we know that they are stored in Page 0
at addresses LOC1, LOC2, LOC3. This is a common mechanism
for passing information between subroutines. The corresponding
program appears below:

BLKADD LDY #NBR-1
NEXT CLC
LDA (LOC1),Y
ADC (LOC2),Y
STA (LOC3), Y
DEY
BPL NEXT

The correspondence between this new program and the previous
one should now be obvious. It illustrates clearly the use of the
indexed indirect mechanism whenever the absolute address is not
known at the time that the program is written,but the location of the
information is known. It can be noted that the two programs
have exactly the same number of instructions. An interesting
exercise is now to determine which one will execute faster.

Exercise 5.2: Compute the number of bytes and the number of
cycles for each of these two programs, using the tables in the Ap-
pendix section.

SUMMARY

A complete description of addressing modes has been presented.
It has been shown that the 6502 offers most of the possible mecha-
nisms, and its features have been analyzed. Finally, several ap-
plication programs have been presented to demonstrate the value
of each of the addressing mechanisms. Programming the 6502
requires an understanding of these mechanisms.

209

PROGRAMMING THE 6502

EXERCISES

5.3: Write a program to add the first 10 bytes of a table stored at
location “BASE.”’ The result will have 16 bits. (This is a
checksum computation).

5.4: Can you solve the same problem without using the indexing
mode?

5.5: Reverse the order of the 10 bytes of this table. Store the re-
sult at address “REVER.”

5.6: Search the same table for its largest element. Store it at
memory address ‘LARGE.”

5.7: Add together the corresponding elements of three tables,
whose bases are BASE1, BASE2, BASES. The length of
these tables is stored in page zero at address “LENGTH.”

210

6
INPUT/OUTPUT TECHNIQUES

INTRODUCTION

We have learned so far how to exchange information between the
memory and the various registers of the processor. We have
learned to manage the registers and to use a variety of instruc-
tions to manipulate the data. We must now learn to communicate
with the external world. This is called the input/output.

Input refers to the capture of data from outside peripherals
(keyboard, disk, or physical sensor). OQutput refers to the transfer
of data from the microprocessor or the memory to external devices
such as a printer, a CRT, a disk, or actual sensors and relays.

We will proceed in two steps. First, we will learn to perform the
input/output operations required by common devices. Second, we
will learn to manage several input/output devices simultaneously,
i.e, to schedule them. This second part will cover, in particular,
polling vs. interrupts.

INPUT/OUTPUT

In this section we will learn to sense or to generate simple
signals, such as pulses. Then we will study techniques for enforc-
ing or measuring correct timing. We will then be ready for more
complex types of input/output, such as high-speed serial and par-
allel transfers.

211

PROGRAMMING THE 6502

Generate a Signal

In the simplest case, an output device will be turned off (or on)
from the computer. In order to change the state of the output
device, the programmer will merely change a level from a logical
“0” to a logical “1”, or from “1” to “0”. Let us assume that an
external relay is connected to bit “0” of a register called “OUT1.”
In order to turn it on, we will simply write a “1” into the appropri-
ate bit position of the register. We assume here that OUT1 repre-
sents the address of this output register within our system. The
program which will turn the relay on is:

TURNON LDA #%00000001
STA ouT1

We have assumed that the state of the other 7 bits of the regis-
ter OUT1 is irrelevant. However, this is often not the case.
These bits might be connected to other relays. Let us, therefore,
improve this simple program. We want to turn the relay on, with-
out changing the state of any other bit within this register. We
will assume that it is possible to read and write the contents of
this register. Our improved program now becomes:

TURNON LDA OUT1 READ CONTENTS OF OUT1
ORA #%00000001 FORCE BIT 0 TO “1”
STA OUT1

The program first reads the contents of location OUT1, then
performs an inclusive OR on its contents. This changes only bit
position 0 to “1”, and leaves the rest of the register intact. (For
more details on the ORA operation, refer to Chapter 4). This is
illustrated by Figure 6-1.

Pulses

Generating a pulse is accomplished exactly as in the case of
the level above. An output bit is first turned on, then later turned
off. This results in a pulse. This is illustrated in Figure 6-2. This
time, however, an additional problem must be solved: one must
generate the pulse for the correct length of time. Let us, therefore,
study the generation of a computed delay.

212

INPUT/OUTPUT TECHNIQUES

BEFORE AFTER

DATA BUS

RELAY

outi

Fig. 6-1: Turning on a Relay

OQUTPUT PORT
REGISTER

SIGNAL

CPU

@ N USEC et

i

—————

0<-i =0

: PUT PORT
THE PR RAM: B HPUT PORT REGISTER WITH PATTERN

WAIT (LOOP FOR N USEC)
LOAD OQUTPUT PORT WITH ZERO
RETURN

Fig. 6-2: A Programmed Pulse

Delay Generation and Measurement

A delay may be generated by software or by hardware methods.
We will study here the way to perform it by program, and later
show how it can also be accomplished with a hardware counter,
called a programmable interval timer (PIT).

Programmed delays are achieved by counting. A counter regis-
ter is loaded with a value, then is decremented. The program
loops on itself and keeps decrementing until the counter reaches
the value “0”. The total length of time used by this process will
implement the required delay. As an example, let us generate a
delay of 37 microseconds.

213

PROGRAMMING THE 6502

DELAY LDY #07 Y IS COUNTER
NEXT DEY DECREMENT
BNE NEXT TEST

This program loads index register Y with the value 7. The next
instruction decrements Y, and the next instruction will cause a
branch to NEXT to occur as long as Y does not decrement to “0.”
When Y finally decrements to zero, the program will exit from
this loop and execute whatever instruction follows. The logic of
the program is simple and appears in the flow chart of Figure 6-3.

COUNTER =VALUE

i Y

DECREMENT COUNTER

e >

YES

out
Fig. 6-3: A Delay Flowchart

Let us now compute the effective delay which will be im-
plemented by the program. Looking at the Appendix section of the
book, we will look up the number of cycles required by each of
these instructions: '

LDY, in the immediate mode, requires 2 cycles. DEY will use 2
cycles. Finally, BNE will use 3 cycles. When looking up the
number of cycles for BNE in the table, verify that 3 possibilities
exist; if the branch does not occur, BNE will only require 2 cycles.
If the branch does succeed, which will be the normal case during
the loop, then one more cycle is required. Finally, if the page
boundary is being crossed, then one extra cycle will be required.
We assume here that no page boundary will be crossed.

The timing.is, therefore, 2 cycles for the first instruction, plus 5

214

INPUT/OUTPUT TECHNIQUES -

cycles for the next 2, multiplied by the number of times the loop
will be executed, minus one cycle for the last BNE:
Delay =2 + 5 x 7 -1 = 36.

Assuming a 1-microsecond cycle time, this programmed delay
will be 36 microseconds.

We can see that the maximum definition with which we can
adjust the length of the delay is 2 microseconds. The minimum
delay is 2 microseconds.

Exercise 6.1: What is the maximum delay which can be imple-
mented with these three instructions? Can you modify the pro-
gram to obtain a one microsecond delay?

Exercise 6.2: Modify the program to obtain a delay of about 100
microseconds.

If one wishes to implement a longer delay, a simple solution is
to add extra instructions in the program, between DEY and BNE.
The simplest way to do so is to add NOP instructions. (The
NOP does nothing for 2 cycles).

Longer Delays

Generating longer delays by software can be achieved by using
a wider counter. Two internal registers, or, better, two words in the
memory, can be used to hold a 16-bit count. To simplify, let us
assume that the lower count is “0.” The lower byte will be loaded
with “255,” the maximum count, then go through a decrementa-
tion loop. Whenever it is decremented to “0,” the upper byte of the
counter will be decremented by 1. Whenever the upper byte is
decremented to the value “0,” the program terminates. If more
precision is required in the delay generation, the lower count can
have a non-null value. In this case, we would write the program
just as explained and add at the end the three-line delay genera-
tion program, which has been described above.

Naturally, still longer delays could be generated by using more
than two words. This is analogous to the way an odometer works
on a car. When the right-most wheel goes from “9” to “0,” the next
wheel to the left is incremented by 1. This is the general principle
when counting with multiple discrete units.

However, the main objection is that when one is counting long
delays, the microprocessor will be doing nothing else for hundreds
of milliseconds or even seconds. If the computer has nothing else

215

PROGRAMMING THE 6502

to do, this is perfectly acceptable. However, in the general case,
the microcomputer should be available for other tasks so that
longer delays are normally not implemented by software. In fact,
even short delays may be objectionable in a system if it is to
provide some guaranteed response time in given situations.
Hardware delays must then be used. In addition, if interrupts are
used, timing accuracy may be lost if the counting loop can be
interrupted.

Exercise 6.3: Write a program to zmplement a 100 ms delay (fora
Teletype).

Hardware Delays

Hardware delays are implemented by using a programmable
interval timer, or ‘‘timer’’ for short. A register of the timer is loaded
with a value. The difference is that, this time, the timer will
automatically decrement this counter periodically. The period is
usually adjustable or selectable by the programmer. Whenever
the timer will have decremented to “0,” it will normally send an
interrupt to the microprocessor. It may also set a status bit which
can be sensed periodically by the computer. The use of interrupts
will be explained later in this chapter.

Other timer operating modes may include starting from “0” and
counting the duration of the signal, or else counting the number
of pulses received. When functioning as an interval timer, the
timer is said to operate in a one-shot mode. When counting pulses,
it is said to operate in a pulse-counting mode. Some timer devices
may even include multiple registers and a number of optional
facilities which are program-selectable. This is the case, for
example, with the timers contained in the 6522 component, an 1/0
chip described in the next chapter.

Sensing Pulses

The problem of sensing pulses is the reverse problem of gener-
ating pulses, plus one more difficulty: whereas an output pulse is
generated under program control, input pulses occur asynchron-
ously with the program. In order to detect a pulse, two methods
may be used: polling and interrupts. Interrupts will be discussed
later in this chapter.

Let us consider now the pollmg techmque Using this technique,
the program reads the value of a given input register continu-

216

INPUT/OQUTPUT TECHNIQUES

ously, testing a bit position, perhaps bit 0. It will be assumed that
bit 0 is originally ““0.”” Whenever a pulse is received, this bit will
take the value “1” The program monitors bit 0 continuously until
it takes the value “1” When a “1” is found, the pulse has been
detected. The program appears below:

POLL LDA #8$01
AGAIN BIT INPUT

BEQ AGAIN
ON ..

Conversely, let us assume that the input line is normally “1”
and that we wish to detect a “0.” This is the normal case for
detecting a START bit when monitoring a line connected to a
Teletype. The program appears below:

POLL LDA #$01
NEXT BIT INPUT

BNE NEXT
START

Monitoring the Duration

Monitoring the duration of the pulse may be accomplished in
the same way as computing the duration of an output pulse.
Either a hardware or a software technique may be used. When
monitoring a pulse by software, a counter is regularly in-
cremented by 1, then the presence of the pulse is verified. If the
pulse is still present, the program loops upon itself. Whenever the
pulse disappears, the count contained in the counter register is
used to compute the effective duration of the pulse. The program
appears below

DURTN LDX #0 CLEAR COUNTER
LDA #$01 MONITOR BIT 0
AGAIN BIT INPUT
BEQ AGAIN
LONGER INX
BIT INPUT
BNE LONGER

Naturally, we assume that the maximum duration of the pulse
will not cause register X to overflow. If this were the case, the

217

PROGRAMMING THE 6502

program would have to be longer to take this into account (or else
it would be a programming error!)

Since we now know how to sense and generate pulses, let us
capture or transfer larger amounts of data. Two cases will be
distinguished: serial data and parallel data. Then we will apply
this knowledge to actual input/output devices.

COUNT / % PAGE ¢

" PAGE 1

STACK

VALID
' .

STATUS

8BITS

Fig. 6-4: Paraliel Word Transfer: The Memory

PARALLEL WORD TRANSFER

It is assumed here that 8 bits of transfer data are available in
parallel at address “INPUT.” The microprocessor must read the
data word at this location whenever a status word indicates that
it is valid. The status information will be assumed to be contained
in bit 7 of address “STATUS.” We will here write a program

218

INPUT/OUTPUT TECHNIQUES

which will read and automatically save each word of data as it
comes in. To simplify, we will assume that the number of words
to be read is known in advance and is contained in location -
“COUNT.” If this information were not available, we would test
for a so-called break character, such as a rubout, or perhaps the
character ‘“*.”” We have learned to do this already.

POLLING OR SERVICE REQUEST

|

READ COUNT

WORD READY?

TRANSFER
WORD

v

DECREMENT
COUNTER

NO

COUNT=0?

YES
ourt

Fig. 6-5: Parallel Word Transfer: Flowchart

The flowchart appears in Figure 6-5. It is quite straightfor-
ward. We test the status information until it becomes “1,” indi-
cating that a word is ready. When the word is ready, we read
it and save it at an appropriate memory location. We decre-
ment the counter and then test whether it has decremented to

219

PROGRAMMING THE 6502

“0.” If so, we are finished; if not, we read the next word. The
program which implements this algorithm appears below:

PARAL LDX COUNT COUNTER
WATCH LDA STATUS BIT 7 IS “1” IF DATA VALID
BPL WATCH DATA VALID?

LDA INPUT READ IT

PHA SAVE IT IN THE STACK
DEX

BNE WATCH

The first two instructions of the program read the status infor-
mation and cause a loop to occur as long as bit 7 of the status
register is ““0.” (It is the sign bit, i.e. bit N).

WATCH LDA STATUS
BPL WATCH

When BPL fails, data is valid and we can read it:
LDA INPUT

The word has now been read from address INPUT where it was,
and must be saved. Assuming that the number of words to be trans-
ferred is small enough, we use:

PHA

If the stack is full, or the number of words to be transferred is large,
we could not push them on the stack and we would have to transfer
them to a designated memory area, using, for example, an indexed
instruction. However, this would require an extra instruction to in-
crement or decrement the index register. PHA is faster.

The word of data has now been read and saved. We will simply
decrement the word counter and test whether we are finished:

DEX
BNE WATCH

We keep looping until the counter eventually decrements to ¢0.”
This 6-instruction program can be called a benchmark. A benchmark
program is a carefully optimized program designed to test the cap-
abilities of a given processor in a specific situation. Parallel trans-
fers are one such typical situation. This program has been designed
for maximum speed and efficiency. Let us now compute the maximum

220

INPUT/OUTPUT TECHNIQUES

transfer speed of this program. We will assume that COUNT is con-
tained in page 0. The duration of every instruction is determined by
inspecting the table at the end of the book and is found to be the
following:

CYCLES
LDX COUNT 3
WATCH LDA STATUS 4
BPL WATCH - 2/3 (FAIL/SUCCEED)
LDA INPUT 4
PHA 3
DEX 2
BNE WATCH 2/3 (FAIL/SUCCEED)

The minimum execution time is obtained by assuming that
data is available every time that we sample STATUS. In other
words, the first BPL will be assumed to fail every time. Timing is
then: 3 + (4+2+4+3+2+3) x COUNT.

Neglecting the first 3 microseconds necessary to initialize the
counter register, the time used to transfer one word is 18 mi-
croseconds.

The maximum data transfer rate is, therefore,

1
= 556 K bytes per second.
18(10-¢) ytes p

Exercise 6.4: Assume that the number of words to be transferred
is greater than 256. Modify the program accordingly and deter-
mine the impact on the maximum data transfer rate.

We have now learned to perform high-speed parallel transfers.
Let us consider a more complex case.

BIT SERIAL TRANSFER

A serial input is one in which the bits of information (0’s or
1’s) come in successively on a line. These bits may come in at
regular intervals. This is normally called synchronous transmis-
sion. Or else, they may come as bursts of data at random inter-
vals. This is called asynchronous transmission. We will develop a
program which can work in both cases. The principle of the cap-
ture of sequential data is simple: we will watch an input line,
which will be assumed to be line 0. When a bit of data is detected
on this line, we will read the bit in, and shift it into a holding reg-
ister. Whenever 8 bits have been assembled, we will preserve the

221

PROGRAMMING THE 6502

A

®

—

®p7

-]
WORD/ PAGES
COUNT:

PAGE 1

|

byte of data into the memory and assemble the next one. In order
to simplify, we will assume that the number of bytes to be received
is known in advance. Otherwise, we might, for example, have to
watch for a special break character, and stop the bit-serial
transfer at this point. We have learned to do that. The flow-chart
for this program appears in Figure 6-7. The program appears

below:

SERIAL LDA
STA

LOOP LDA
BPL
LSR
ROL
BCC

222

#$00
WORD
INPUT
LOOP
A
WORD
LOOP
WORD

#$01
WORD
COUNT
LOOP

JE—
/, X SERIAL DATA
/ Y. /o/"'

INPUT

Fig. 6-6: Serial to Parallel Conversion

BIT 7 IS STATUS, “0” IS DATA
BIT RECEIVED?

SHIFT IT INTO C

SAVE BIT IN MEMORY
CONTINUE IF CARRY = “0”

SAVE ASSEMBLED BYTE
RESET BIT COUNTER

DECREMENT WORD COUNT
ASSEMBLE NEXT WORD

INPUT/OUTPUT TECHNIQUES

This program has been designed for efficiency and will use new
techniques which we will explain. (See Fig. 6-6.)

The conventions are the following: memory location COUNT is
assumed to contain a count of the number of words to be trans-
ferred. Memory location WORD will be used to assemble 8 con-
secutive bits coming in. Address INPUT refers to an input regis-
ter. It is assumed that bit position 7 of this register is a status flag,
or a clock bit. When it is *“0,” data is not valid. When it is “1,” the
data is valid. The data itself will be assumed to appear in bit
position 0 of this same address. In many instances, the status
information will appear on a different register than the data reg-

POLLING OR SERVICE REQUEST

READ WORD COUNT

BIT READY? NO >

YES

STORE BIT
INCREMENT COUNTER

WORD
ASSEMBLED?

STORE WORD
RESET BIT COUNTER
DECREMENT WORD COUNT

WORD
COUNT=0?

YES

DONE

Fig. 6-7: Bit Serial Transfer: Flowchart

223

PROGRAMMING THE 6502

ister. It should be a simple task, then, to modify this program
accordingly. In addition, we will assume that the first bit of data
to be received by this program is guaranteed to be a “1.” It indi-
cates that the real data follows. If this were not the case, we will
see later an obvious modification to take care of it. The program
corresponds exactly to the flowchart of Figure 6-7. The first few
lines of the program implement a waiting loop which tests
whether a bit is ready. To determine whether a bit is ready, we
read the input register then test the sign bit (N). As long as this
bit is “0,” the instruction BPL will succeed, and we will branch
back to the loop. Whenever the status (or clock) bit will become
true (“1”), then BPL will fail and the next instruction will be
executed.

Remember that BPL means ‘‘Branch on Plus,” i.e. when bit 7
(the sign bit) is ‘0.’ ‘This initial sequence of instructions corre-
sponds to arrow 1 on Figure 6-6.

At this point, the accumulator contains a “1” in bit position 7
and the actual data bit in bit position 0. The first data bit to arrive
is going to be a “1.” However, the following ones may be either “0”
or “1” We now wish to preserve the data bit which has been
collected in position 0. The instruction:

LSR A

shifts the contents of the accumulator right by one position. This
causes the right-most bit of A, which is our data bit, to fall into
the carry bit. We will now preserve this data bit into the memory
location WORD (this is illustrated by arrows 2 and 3 in Fig. 6-6):

ROL WORD.

The effect of this instruction is to read the carry bit into the
right-most bit position of address WORD. At the same time, the
left-most bit of WORD falls into the carry bit. (If you have any
doubts about the rotation operation, refer to Chapter 4!)

It is important to remember that a rotation operation will both
save the carry bit, here into the right-most bit position, and also
recondition the carry bit with the value of bit 7.

Here, a “0” will fall into the carry. The next instruction:

BCC LOOP

tests the carry and branches back to address LOOP as long as the
carry is ““0.” This is our automatic bit counter. It can readily be

224

INPUT/OUTPUT TECHNIQUES

seen that as a result of the first ROL, WORD will contain
“00000001.” Eight shifts later, the “1” will finally fall into the
carry bit and stop the branching. This is an ingenious way to
implement an automatic loop counter without having to waste an
instruction to decrement the contents of an index register. This
technique is used in order to shorten the program and improve its
performance.

Whenever BCC finally fails, 8 bits have been assembled into lo-
cation WORD. This value should be preserved in the memory. This
is accomplished by the next instructions (arrow 4 in Fig. 6-6):

LDA WORD
PHA

We are here saving the WORD of data (8 bits) into the stack.
Saving it into the stack is possible only if there is enough room in
the stack. Provided that this condition is met, it is the fastest way
to preserve a word in the memory. The stack pointer is updated
automatically. If we were not pushing a word in the stack, we
would have to use one more instruction to update a memory
pointer. We could equivalently perform an indexed addressing
operation, but that would also involve decrementing or incre-
menting the index, using extra time.

After the first WORD of data has been saved, there is no longer
any guarantee that the first data bit to come in will be a ““1.” It can
be anything. We must, therefore, reset the contents of WORD to
“00000001” so that we can keep using it as a bit counter. This is
performed by the next two instructions:

LDA #301
STA WORD

Finally, we will decrement the word counter, since a word has
been assembled, and test whether we have reached the end of the
transfer. This is accomplished by the next two instructions:

DEC COUNT
BNE LOOP

The above program has been designed for speed, so that one
may capture a fast input stream of data bits. Once the program
terminates, it is naturally advisable to immediately read away
from the stack the words'that have been saved there and transfer
them elsewhere into the memory. We have already learned to

225

PROGRAMMING THE 6502

perform such a block transfer in Chapter 2.

Exercise 6.5: .Compute the maximum speed at which this pro-
gram will be able to read serial bits. To compute this speed, as-
sume that addresses WORD and COUNT are kept in Page 0. Also,
assume that the complete program resides within the same page.
Look up the number of cycles required by every instruction, in the
table at the end of this book, then compute the time which will
elapse during execution of this program. To compute the length
of time which will be used by a loop, simply multiply the total
duration of this loop, expressed in microseconds, by the number
of times it will be executed. Also, when computing the maximum
speed, assume that a data bit will be ready every time that the in-
put location is sensed.

This program is more difficult to understand than the previous
ones. Let us look at it again (refer to Figure 6-6) in more detail,
examining some trade-offs.

A bit of data comes into bit position 0 of “INPUT” from
time to time. There might be, for example, three ““1’s” in succession.
We must, therefore, differentiate between the successive bits com-
ing in. This is the function of the *“‘clock’ signal.

The clock (or STATUS) signal tells us that the input bit is
now valid.

Before reading a bit, we will therefore first test the status bit.
If the status is “0’’, we must wait. If itis‘‘1”’, then the data
bit is good.

We assume here that the status signal is connected to bit 7
of register INPUT.

Exercise 6.6: Can you explain why bit 7 is used for status, and
bit 0 for data?

Once we have captured a data bit, we want to preserve it in
a safe location, then shift it left, so that we can get the next bit.
Unfortunately, the accumulator is used to read and test both data
and status in this program. If we were to accumulate data in the
accumulator, bit position 7 would be erased by the status bit.

Exercise 6.7: Can you suggest a way to test status without eras-
ing the contents of the accumulator (a special instruction)? If this

226

INPUT/OUTPUT TECHNIQUES

can be done, could we use the accumulator to accumulate the suc-
cessive bits coming in?

Exercise 6.8: Re-write the program, using the accumulator to -
store the bits coming in. Compare it to the previous one in terms
of speed and number of instructions.

Let us address two more possible variations:

We have assumed that, in our particular example, the very first bit to
come in would be a special signal, guaranteed to be ‘1.”” However, in
the general case, it may be anything.

Exercise 6.9: Modify the program above, assuming that the very
first bit to come in is valid data (not to be discarded), and can be
“0” or “1.” Hint: our “bit counter’ should still work correctly,
if you initialize it with the correct value.

Finally, we have been saving the assembled WORD in the stack, to
gain time. We could naturally save it in a specified memory area:

Exercise 6.10: Modify the program above, and save the assem-
bled WORD in the memory area starting at BASE.

Exercise 6.11: Modify the program above so that the transfer
will stop when the character ‘S’ is detected in the input stream.

The Hardware Alternative

As usual for most standard input/output algorithms, it is possi-
ble to implement this procedure by hardware. The chip is called a
UART. It will automatically accumulate the bits. However, when
one wishes to reduce the component count, this program, or a
variation of it, will be used instead.

Exercise 6.12: Modify the program assuming that data is avail-
able in bit position 0 of location INPUT, while the status informa-
tion is available in bit position 0 of address INPUT + 1.

227

PROGRAMMING THE 6502

BASICI/O0 SUMMARY

We have now learned to perform elementary input/output op-
‘erations as well as to manage a stream of parallel data or serial
bits. We are ready to communicate with real input/output devices.

COMMUNICATING WITH INPUT/OUTPUT DEVICES

In order to exchange data with input/output devices, we will
first have to ascertain whether data is available, if we want to
read it, or whether the device is ready to accept data, if we want to
send it. Two procedures may be used: handshaking and inter-
rupts. Let us study handshaking first.

Handshaking

Handshaking is generally used to communicate between any
two asynchronous devices, i.e., between any two devices which
are not synchronized. For example, if we want to send a word to a
parallel printer, we must first make sure that the input buffer of
this printer is available. We will, therefore, ask the printer: Are
you ready? The printer will say “yes” or “no.” If it is not ready we
will wait. If it is ready, we will send the data. (See Fig. 6-8.)

READY?

“READ | STATUS
STATUS) REGISTER
YES/NO)

outpUT -
REGISTER

1¥OCHIP

MPU

ouTPUT
DEVICE

Fig. 6-8: Handshaking (Output)

Conversely, before reading data from an input device, we will
verify whether the data is valid. We will ask: “Is data valid?” And
the device will tell us “yes” or “no.” The “yes” or “no” may be
indicated by status bits, or by other means. (See Fig. 6-9.)

228

INPUT/OUTPUT TECHNIQUES

INPUT
REGISTER

CHARACTER
- Feors STATUS
REGISTER
—
YES/NO

Fig. 6-9: Handshaking (Input)

INPUT
DEVICE

In short, whenever you wish to exchange information with
someone who is independent and might be doing something else
at the time, you should ascertain that he is ready to communicate
with you. The usual courtesy rule is to shake his hand. Data
exchange may then follow. This is the procedure normally used in
communicating with input/output devices.

Let us illustrate this procedure now with a simple example:

Sending a Character To The Printer

The character will be assumed to be contained in memory loca-
tion CHAR. The program to print it appears below:

CHARPR LDX CHAR READ CHARACTER
WAIT LDA STATUS BIT 7IS “READY”
BPL WAIT
TXA
STA PRINTD

Register X is first loaded from the memory with a character to
be printed. Then we test the status bit of the printer to determine
that it is ready to accept the character. As long as it is not ready to
print, however, we branch back to address WAIT, and we loop.
Whenever the printer indicates that it is ready to print by setting
its ready-bit (here bit 7 by convention of address STATUS), we
can send the character. We transfer the character from register X
to register A:

TXA

229

PROGRAMMING THE 6502

and we send it to the printer’s output register address, called here
PRINTD.

STA PRINTD

Exercise 6.13: Modify the program above to print a string of n
characters, where n will be assumed to be less than 255.

Exercise 6.14: Modify the above program to print a string of
characters until a “‘carriage-return’’ code is encountered.

Let us now complicate the output procedure by requiring a code
conversion and by outputting to several devices at a time:

A
A AT
>
S ~N
F B
A A
A A/
G
~N ~NA
E c
~N ~A
AN NS
>I.>'_

D

Fig. 6-10: Seven Segment LED

Output to a 7-Segment LED

A traditional 7-segment light-emitting-diode (LED) may dis-
play the digits “0” through *9,” or even “0” through “F” hexadec-
imal by lighting combinations of its 7 segments. A 7-segment
LED is shown in illustration 6-10. The characters that may be gen-
erated with this LED appear in Figure 6-11. The segments of an LED
ARE LABELLED “A” through ‘“G” in Figure 6-10.

For example, “0” will be displayed by lighting the segments

230

INPUT/OUTPUT TECHNIQUES

“ABCDEF.” Let us assume, now, that bit “0” of an output port is
connected to segment “A,” that “1” is connected to segment ‘‘B,”
and so on. Bit 7 is not used. The binary code required to light up
“FEDCBA” (to display “0”’) is, therefore, “0111111.” In hexa-
decimal this is “3F.” Do the following exercise.

A
— —— —

/ /// /_/_7/[__//-{_-_/

F
——— —

/o aaT
7

[1] T L
- Ny

ANy Y
[

Fig. 6-11: Characters Generated with a 7-Segment LED

Exercise 6.15: Compute the 7-segment equivalent for the hexa-
decimal digits ‘0" through “‘F."” Fill out the table below:

Hex|LED code]Hex|LED code JHex|LED code |Hex |LED code
0 3F 4 8 C
1 5 9 D
2 6 A E
3 7 B F
Let us now display hexadecimal values on several LEDs.
Driving Multiple LEDs

An LED has no memory. It will display the data only as long as
its segment lines are active. In order to keep the cost of an LED
display low, the microprocessor will display information in turn
on each of the LEDs. The rotation between the LEDs must be fast
enough so that there is no apparent blinking. This implies that
the time spent from one LED to the next is less than 100 milli-

231

PROGRAMMING THE 6502

seconds. Let us design a program which will accomplish this.
Register Y will be used to point to the LED on which we want to
display a digit. The accumulator is assumed to contain the
hexadecimal value to be displayed on the LED. Our first concern
is to convert the hexadecimal value into its 7-segment repre-
sentation. In the preceding section, we have built the equivalence
table. Since we are accessing a table, we will use the indexed
addressing mode, where the displacement index will be provided
by the hexadecimal value. This means that the 7-segment code for
hexadecimal digit #3 is obtained by looking up the third element
of the table after the base. The address of the base will be called
SEGBAS. The program appears below:

LEDS TAX USE HEX VALUE AS INDEX
LDA SEGBAS, X READ CODE IN A
LDX #$00

STX SEGDAT TURN OFF SEGMENT DRIVERS
STA SEGDAT DISPLAY DIGIT
LDX #870 ANY LARGE NUMBER
STY SEGADR
DELAY DEX
BNE DELAY

DEY POINT TO NEXT LED
BNE out
LDY LEDNBR

ouT RTS

The program assumes that register Y contains the number of the
LED to be illuminated next, and that register X contains the digit
to be displayed.

The program first looks up the 7-segment code corresponding to
the hexadecimal value contained in the accumulator with its first
two instructions. The next two instructions load “00” as the value
of the segments to be displayed, i.e., turn them off. The next
instruction then selects the appropriate LED segments for dis-
play: STY SEGADR.

A three-instruction loop delay is then implemented before
switching to the next LED. Finally, the LED pointer is de-
cremented. (It could be incremented).

If the LED pointer decrements to “0,” it must be reloaded with
the highest LED number. This is accomplished by the next two
instructions. It is assumed here that this is a subroutine and the
last instruction is an RTS: ‘“‘return from subroutine.”’

232

INPUT/OUTPUT TECHNIQUES

SToP l.ST(P 2.

HARK = = [u]slel718] @
spAcs----'-h-Lz-L-L-l—u—um s

]
9,09 us —>+—1{

Fig. 6-12: Format of a Teletype Word

Exercise 6.16: Assuming that the above program is a subroutine,
you will notice that it uses registers X and Y internally and mod-
ifies their contents. Assuming that the subroutine may freely use
the memory area designated by address T1, T2, T3, T4, T5, could
you add instructions at the beginning and at the end of this pro-
gram which will guarantee that, when the subroutine returns, the
contents of registers X and Y will be the same as when the sub-
routine was entered?

Exercise 6.17: Same exercise as above, but assume that the
memory area T1, etc. is not available to the subroutine. (Hint: re-
member that there is a built-in mechanism in every computer for
preserving information in a chronological order).

We have now solved common input/output problems. Let us
consider the case of a real peripheral: the Teletype.

Teletype Input/Output

The Teletype is a serial device. It both sends and receives words
of information in a serial format. Each character is encoded in an
8-bit ASCII format (the ASCII table appears at the end of this

233

PROGRAMMING THE 6502

START BIT?

YES

WAIT 4.5 ms
ECHO START BIT

[

WAIT 9.09 ms

SHIFT IN DATA BIT
ECHOIT

NO CHARACTER
ASSEMBLED!

YES

WAIT 9.09 ms

OUTPUT STOP BIT

WAIT 13.59 ms

Fig. 6-13: TTY Input with Echo

INPUT/OUTPUT TECHNIQUES

book). In addition, every character is preceded by a “start” bit,
and terminated by two “stop” bits. In the so-called 20-milliamp
current loop interface, which is most frequently used, the state of
the line is normally a “1.” This is used to indicate to the processor
that the line has not been cut. A start is a “1”-to-“0” transition. It
indicates to the receiving device that data bits follow. The standard
Teletype is a 10-characters-per-second device. We have just es-
tablished that each character requires 11 bits. This means that
the Teletype will transmit 110 bits per second. It is said to be a 110-
baud device. We will design a program to serialize bits in from the
Teletype at the correct speed.

One hundred and ten bits per second implies that bits are sepa-
rated by 9.09 milliseconds. This will have to be the duration of the
delay loop to be implemented between successive bits. The format
of a Teletype word appears in Figure 6-12. The flowchart for bit

input appears in Figure 6-13. The program follows:

TTYN LDA STATUS
BPL TTYIN USUAL STATUS POLL
JSR DELAY WAIT
LDA TTYBIT START BIT
STA TTYBIT ECHO BACK
JSR DELAY
LDX #308 BIT COUNTER
NEXT LDA TTYBIT SAVE INPUT
STA TTYBIT ECHO BACK

LSR A SAVE BIT IN CARRY
ROL CHAR SAVE BIT IN CHAR
JSR DELAY

DEX NEXT BIT

BNE NEXT

LDA TTYBIT STOP BIT

STA TTYBIT

JSR DELAY

RTS

Fig. 6-14: Input from Teletype

Note that this program differs slightly from the flowchart of Fig. 6-13.

235

PROGRAMMING THE 6502

The program should be examined with attention. The logic is quite
simple. The new fact is that, whenever a bit is read from the Tele-
type (at address TTYBIT), it is echoed back to the Teletype. This
is a standard feature of the Teletype. Whenever a user presses a key,
the information is transmitted to the processor and then back to the
printing mechanism of the Teletype. This verifies that the transmis-
sion lines are working and that the processor is operating when a
character is, indeed, printing correctly on the paper.

MEMORY +1/0

X A

=L

STATUS |X

TELETYPE

Y BIT

Fig. 6-15: Teletype Input

The first two instructions are the waiting loop. The program waits
for the status bit to become true before it starts reading bits in.
As usual, the status bit is assumed to come in bit position 7,
since this position can be tested in one instruction by BPL (Branch
on Plus-this is the sign bit).

JSR is the subroutine jump. We use a DELAY subroutine to
implement the 9.09 ms delay. Note that DELAY can be a delay loop,
or can use the hardware timer, if our system has one.

The first bit to come in is the start bit. It should be echoed to the
Teletype, but otherwise ignored. This is done by inswructions 4 and 5.

Again, we wait for the next bit. But, this time, it is a true
data bit, and we must save it. Since all shift instructions will
drop a bit in the carry flag, we need two instructions to preserve
our data bit (the X in Figure 6-15): one to drop it into C (LSR A),

236

INPUT/OUTPUT TECHNIQUES

and one to preserve it into memory location CHAR (ROL).

Beware of one problem: the “ROL’’ will destroy the contents of
C. If we want to echo the data bit back, a precaution must be tak-
en to preserve it before it disappears into CHAR. Finally, we echo

the data bit (STA

DELAY) until we accumulate all eight data bits (DEX).
Whenever we decrement to zero, all 8 bits are in CHAR. We
just have to echo the STOP bits, and we are finished.

TTYBIT) and wait for the next one (JSR

Exercise 6.18: Write the delay routine which results in the 9.09
millisecond delay. (DELAY subroutine)

ENTER

Y

SEND START
BIT

Y

SEND DATA
BITS

Y

SEND STOP
BIT

Y

EXIT

Fig. 6-16: Teletype Output

ENTER

Y

SET BIT
COUNTER TO
ELEVEN

OUTPUT
A BIT

DELAY
9.1 MSEC

"

YES

RET

237

PROGRAMMING THE 6502

Exercise 6.19: Using the example of the program developed
above, write a PRINTC program which will print on the Teletype
the contents of memory location CHAR.

~ Exercise 6.20: Modify the program so that it waits for a START
bit instead of a STATUS bit.

Printing a String of Characters

We will assume that the PRINTC routine (see Exercise 6-18)
takes care of printing a character on our printer, display, or any
output device. We will here print the contents of memory loca-
tions START + N to START.

" We will naturally use the indexed addressing mode and the
program is straight-forward:

PSTRING LDX #N NUMBERS OF WORDS
NEXT LDA START +N

JSR PRINTC

DEX

BPL NEXT

MEMORY

X

COUNTER

-

START +N
————-—-—' TO PRINTER
OUTPUT REGISTER

Fig. 6-17: Print a Memory Block

PERIPHERAL SUMMARY

We have now described the basic programming techniques used
to communicate with typical input/output devices. In addition to
the data transfer, it will be necessary to condition one or more

238

INPUT/OUTPUT TECHNIQUES

control registers within each 1/0 device in order to condition cor-
rectly the transfer speeds, the interrupt mechanism, and the var-
ious other options. The manual for each device should be con-
sulted. (For more details on the specific algorithms to exchange
information with all the usual peripherals, the reader is referred
to our book, C207, Microprocessor Interfacing Techniques.”)

We have now learned to manage single devices. However, in a
real system, all peripherals are connected to the busses, and may
request service simultaneously. How are we going to schedule the
processor’s time?

INPUT/OUTPUT SCHEDULING

Since input/output requests may occur simultaneously, a
scheduling mechanism must be implemented in every system to
determine in which order service will be granted. Three basic
input/output techniques are used, which can be combined.
They are: polling, interrupt, DMA. Polling and interrupts
will be described here. DMA is purely a hardware tech-

INTERRUPT

170 170 |
INTH
Y INT Y INT
HOLD]
I MEMORY I [DMAj
TTTX
MPU i] DMA
]
| o 170

Fig. 6-18: Three Methods of I/O Control

239

PROGRAMMING THE 6502

nique, and as such will not be described here. (It is covered in
the reference books C201 and C207)-

Polling

Conceptually, polling is the simplest method for managing multiple
peripherals. With this strategy, the processor interrogates the devices
connected to the buses in turn. If a device requests service, the service
is granted. If it does not request service, the next peripheral is exam-
ined. Polling is not just used for the devices, but for any device service
routine.

A
REQUESTING
SERVICE?

SERVICE ROUTINE
FOR DEVICE A

-]
REQUESTING
SERVICE?

SERVICE ROUTINE
FOR DEVICE B

C
REQUESTING
SERVICE?

SERVICE ROUTINE
NO FOR DEVICE C

]

Fig. 6-19: Polling Loop Flow-chart

As an example, if the system is equipped with a Teletype, a tape re-
corder, and a CRT display, the polling routine would interrogate the
Teletype: “Do you have a character to transmit?’’ It would interrogate
the Teletype output routine, asking: ‘Do you have a character to send?”’
Then, assuming that the answers are negative so far, it would interro-
gate the tape recorder routines, and finally the CRT display. In the case
that only one device is connected to a system, polling will be used as

INPUT/OUTPUT TECHNIQUES

A 4

SET READER
ENABLE ON

&

b &

READY? '
NO

YES

READ CHARACTER

Fig. 6-20: Reading from a Paper-Tape Reader

o>

YES

LOAD PUNCH
OR PRINTER
BUFFER

TRANSMIT
DATA

Fig. 6-21: Printing on a Punch or Printer

241

PROGRAMMING THE 6502

well to determine whether it needs service. As an example, the flow-
charts for reading from a paper-tape reader and for printing on a print-
er appear in Figures 6-20 and 6-21.

Example: a polling loop for devices 1, 2, 3, 4, (see Fig. 6-18):

POLL4 LDA STATUS1 SERVICE REQUEST IS BIT 7
BMI ONE
LDA STATUS2 DEVICE2?
BMI TWO :
LDA STATUS3 DEVICES3?
BMI THREE
LDA STATUS4 DEVICE4
BMI FOUR
JMP POLL4 TEST AGAIN

Bit 7 of the status register for each device is “1” when it wants
service. When a request is sensed, this program branches to the
device handler, at address ONE for device 1, TWO for device 2, etc.

The advantages of polling are obvious: it is simple, does not
require any hardware assistance, and keeps all input/output syn-
chronous with the program operation. Its disadvantage is just as
obvious: most of the processors time is wasted looking at devices
that do not need service. In addition, the processor might g1ve
service to a device too late, by wasting so much time.

Another mechanism is, therefore, desirable which guarantees
that the processor’s time can be used to perform useful computa-
tions, rather than polling devices needlessly all the time. How-
ever, let us stress that polling is used extensively whenever a
microprocessor has nothing better to do, as it keeps the overall
organization simple. Let us now examine the essential alterna-
tive to polling: interrupts.

Interrupts

The concept of interrupts is illustrated in Figure 6-18. A spe-
cial hardware line is available, the interrupt line, which is con-
nected to a specialized pin of the microprocessor. Multiple input/
output devices may be connected to this interrupt line. When any
one of them needs service, it sends a level or a pulse on this line.
An interrupt signal is the service request from an input/output

242

INPUT/OUTPUT TECHNIQUES

IRQ

YES
» |GNORE
INTERRUPT

NO

STACK PC, P

SET |

LOAD PC FROM
(FFFE, FFFF)

JUMP

Fig. 6-22: Interrupt Processing

243

PROGRAMMING THE 6502

device to the processor. Let us examine the response of the proc-
essor to this interrupt.

In any case, the processor completes the instruction that it was
currently executing, or else this would create chaos inside the
microprocessor. Next, the microprocessor should branch to an
interrupt handling routine which will process the interrupt. Branching
to such a subroutine implies that the contents of the program counter
must be saved on the stack. An interrupt must, therefore, cause
the automatic preservation of the program counter on the stack.
In addition, the status register (P) should also be automatically
preserved, as its contents will be altered by any subsequent in-
struction. Finally, if the interrupt handling routine should modify
any internal registers, these internal registers should also be pre-
served on the stack. '

After all these registers have been preserved, one can branch to
the appropriate interrupt handling address. At the end of this
routine, all the registers should be restored, and a special inter-
rupt return should be executed so that the main program will
resume execution. Let us examine in more detail the two inter-
rupt lines of the 6502.

6502 Interrupts

The 6502 is equipped with two interrupt lines, IRQ and NMI.
IRQ is the regular interrupt line, while NMI is a higher priority
non-maskable interrupt. Let us examine their operation.

IRQ is the level-activated interrupt. The status of the IRQ line
will be sensed or ignored by the microprocessor depending upon
the value of its internal flag I (interrput-mask flag). We will ini-
tially assume that interrupts are enabled. Whenever IRQ is
activated, the interrupt will be sensed by the microprocessor. As
soon as the interrupt is accepted (upon completion of the instruc-
tion currently executing), the internal I flag is automatically set.
This will prevent the microprocessor from being interrupted
again at a time when it is manipulating internal registers. The
6502 then automatically preserves the contents of PC (the pro-
gram counter) and P (the status register) into the stack. The
aspect of the stack after an interrupt has been processed is illus-
trated by Figure 6-23.

Next, the 6502 will automatically fetch the content of memory
locations ““FFFE’’ and “‘FFFF.” This 16-bit memory location will

24

INPUT/OUTPUT TECHNIQUES

PCL

PCH

Fig. 6-23: 6502 Stack After interrupt

contain the interrupt-vector. The 6502 will fetch the contents.of
this address, then branch to the specified 16-bit vector. The user is
responsible for depositing this vectoring address at “FFFE”-
“FFFF”. However, several devices may be connected to the IRQ
line. In this case, we are branching to a single interrupt handling
routine. How are we going to differentiate between the various
devices? This will be studied in the next section.

The NMI interrupt is essentially identical to IRQ except that it

NMI

FFFC RES

FFFA

FFFB

FFFD VECTOR
FFFE

FFFF VECTOR
“

Fig. 6-24: interrupt Vectors

245

PROGRAMMING THE 6502

cannot be masked by the I bit. It is a higher priority interrupt,
typically used for power failures. Its operation is otherwise iden-
tical except that the processor branches automatically to the con-
tents of ‘““FFFA”’-‘FFFB”’. This is illustrated in Figure 6-24.

The return from an interrupt is accomplished by instruction
RTI. This instruction transfers back into the microprocessor the
top three words of the stack which contains P and PC (the 16-bit
program counter). The program which had been interrupted can
then resume. The internal state of the machine is exactly identi-
cal to the one at the time that the interrupt occurred. The effect
has been to introduce a delay in the execution of the program.

Prior to returning from an interrupt, the programmer is re-
sponsible for clearing the interrupt that it has now serviced, and
restoring the interrupt disable flag. In addition, should the inter-
rupt handling routine modify the contents of any register, such as
X or Y, the programmer is specifically responsible for preserving
these registers in the stack prior to executing the interrupt han-
dling routine. Otherwise, the contents of these registers will be
modified, and when the interrupted program resumes execution,
it will not be correct.

Assuming that the interrupt handling routine will use regis-
ters A, X, and Y, five instructions will be necessary within the
interrupt handler to preserve these registers. They are:

SAVAXY PHA PUSH A IN THE STACK
TXA TRANSFER X TO A
PHA PUSH IT
TYA TRANSFER Y TO A
PHA PUSHIT

Unfortunately, the 6502 may only directly push the contents of A or
P on the stack. As a result, preserving X and Y is time-consuming; it
requires 4 instructions. This is illustrated in Figure 6-25.

Upon the completion of the interrupt handling routine, these
registers must be restored and the interrupt handler must termi-
nate with the sequence of six instructions:

INPUT/OUTPUT TECHNIQUES

PLA PULL Y FROM STACK
TAY RESTORE Y

PLA PULL X

TAX RESTORE X

PLA RESTORE A

RTI EXIT

P

PCL

PCH

STACK

Fig. 6-25: Saving all the Registers

Exercise 6.21: Using the table indicating the number of cycles
per instruction, in the Appendix, compute how much time will be
lost by saving and then restoring registers A, X, and Y.

For a graphic comparison of the polling process vs. the interrupt
process, refer to Figure 6-18, where the polling process is illustrated
on the top, and the interrupt process underneath. It can be seen that
in the polling technique, the program wastes a lot of time waiting.
Using interrupts, the program is interrupted, the interrupt is serviced,
then the program resumes. However, the obvious disadvantage of an
interrupt is to introduce several additional instructions at the beginning
and at the end, resulting in a delay before the first instruction of the
device handler can be executed. This is additional overhead.

247

PROGRAMMING THE 6502

Having clarified the operation of the two interrupt lines, let us
now consider two important problems remaining:

1. How do we resolve the problem of multiple devices trigger-
ing an interrupt at the same time?

2. How do we resolve the problem of an interrupt occurring
while another interrupt is being serviced?

Multiple Devices Connected to a Single Interrupt Line

Whenever an interrupt occurs, the processor automatically
branches to an address contained at “FFFE-FFFF” (for an IRQ),
or at “‘FFFA-FFFB”’ (for an NMI). Before it can do any effective
processing, the interrupt handling routine must determine which
device triggered the interrupt. Two methods are available to iden-
tify the device, as usual: a software method and a hardware
method.

I 1 POLLING INTERRUPT VECTORED
which 2| ROHINE ;

DEVICE?

SERVICE
ROUTINE P

SERVICE
ROUTINE

SERVICE
ROUTINE N

Fig. 6-26: Polled vs. Vectored Interrupt

In the software method, polling is used: the microprocessor in-
terrogates each of the devices in turn and asks them, “Did you
trigger the interrupt?”’ If not, it interrogates the next one. This
process is illustrated in Figure 6-26. A sample program is:

LDA STATUS1

BMI ONE
LDA STATUS2
BMI TWO

INPUT/OUTPUT TECHNIQUES

The hardware method uses additional components but provides
the address of the interrupting device simultaneously with the
interrupt request. The device now universally used to provide this
facility is called a ‘‘PIC,”’ or priority-interrupt-controller. Such a
PIC will automatically place on the data bus the actual required
branching address for the interrupting peripheral. When the
6502 goes to ““FFFE”’-*‘FFFF,” it will fetch this vectoring address.
This concept is illustrated in Figure 6-26.

In most cases, the speed of reaction to an interrupt is not cru-
cial, and a polling approach is used. If response time is a primary
consideration, a hardware approach must be used.

10 ces 1”0
INTERFACE 1 INTERFACE

‘Ml JlNTu

Fig.6-27: Several Devices May Use the Same Interrupt Line

Multiple Interrupts

The next problem which may occur is that a new interrupt can
be triggered during the execution of an interrupt handling
routine. Let us examine what happens and how the stack is used
to solve the problem. We have indicated in Chapter 2 that this
was another essential role of the stack, and the time has come
now to demonstrate its use. We will refer to Figure 6-28 to illus-
trate multiple interrupts. Time elapses from left to right in the
illustration. The contents of the stack are shown at the bottom of
the illustration. Looking at the left, at time TO, program P is in
execution. Moving to the right, at time T1, interrupt I1 occurs. We
will assume that the interrupt mask was enabled, authorizing I1.
Program P will be suspended. This is shown at the bottom of the
illustration. The stack will contain the program counter and the
status register of Program P, at least, plus any optional registers
that might be saved by the interrupt handler or I1 itself.

At time T1, interrupt I1 starts executing until time T2. At time
T2, interrupt 12 occurs. We will assume that interrupt 12 is con-
sidered to have a higher priority than interrupt I1. If it had a

249

PROGRAMMING THE 6502

TIME To T T, T, T. Ty Te
PROGRAMP bl = = = - o - o o e e = - = - - ——
INTERRUPT 1,

INTERRUPT 1,
INTERRUPT 1,

- mH oHd

T T T
Fig. 6-28: Stack During Interrupts

lower priority, it would be ignored until I1 had been completed. At
time T2, the registers for I1 are stacked, and this appears at the
bottom of the illustration. Again, the contents of the program
counter and P are pushed into the stack. In addition, the routine
for I2 might decide to save an additional few registers. I2 will now
execute to completion at time T3.

When I2 terminates, the contents of the stack are automati-
cally popped back into the 6502, and this is illustrated at the
bottom of Figure 6-28. Automatically, interrupt I1 thus resumes
execution. Unfortunately, at time T4, an interrupt I3 of higher
priority occurs again. We can see at the bottom of the illustration
that the registers for I1 are again pushed into the stack. Interrupt
I3 executes from T4 to T5 and terminates at T5. At that time, the
contents of the stack are popped into 6502, and interrupt I1 re-
sumes execution. This time it runs to completion and terminates
at T6. At T6, the remaining registers that have been saved in the
stack are popped into the 6502, and program P may resume execu-
tion. The reader will verify that the stack is empty at this point.
In fact, the number of dashed lines indicating program suspen-
sion indicates at the same time the number of levels there are in the
stack.

Exercise 6.22: If we assume that every time an interrupt occurs
the program counter PC, the register P, and the accumulator will
be saved, this will be a minimum of four locations. (In practice, X

250

INPUT/OUTPUT TECHNIQUES

and Y may be saved as well, resulting in six locations used).As-
suming, therefore, that three registers only are saved in the stack,
how many interrupt levels does the 6502 allow? (Remember that
the stack is limited to 256 locations with Page 1).

Exercise 6.23: Assuming this time that 5 registers may be pre-
served in the stack, what is the maximum number of simultane-
ous interrupts that can be handled? Will any other factor reduce even
Surther the number of simultaneous interrupts?

It must be stressed, however, that, in practice, microprocessor
systems are normally connected to a small number of devices
using interrupts. It is, therefore, unlikely that a high number of
simultaneous interrupts will occur in such a system.

We have now solved all the problems normally associated with
interrupts. Their use is, in fact, simple and they should be used to
advantage even by the novice programmer. Let us complete our
analysis of the 6502 resources by introducing one more instruc-
tion whose effect is identical to that of a synchronous interrupt:

Break

The BRK command in the 6502 is the equivalent of a software
interrupt. It can be inserted in a program and results, just as in
the case of IRQ, in the automatic preservation of PC and P, and
an indirect branch to ‘“‘FFFE”’-“FFFF.” This instruction can be
used to advantage to generate programmed interrupts during the de-
bugging of a program. This will result in creating a breakpoint, halt-
ing the program at a predetermined location, and branching to a
routine which will typically allow the user to analyze the pro-
gram. Since the net effect of the break and an interrupt are iden-
tical after they have occurred, a means must be provided for the
programmer to determine whether it was an interrupt or a break.
The 6502 will set a B-flag in register P (saved in the stack) to “‘1°’ if
it was a break and to “0” if it was an interrupt. Testing the status
of this bit may be accomplished by the following simple program:

BTEST PLA READ TOP OF STACK INTO A
PHA WRITE IT BACK
AND #8$10 MASK B-BIT
BNE BRKPRG GO TO BREAK PROGRAM

251

PROGRAMMING THE 6502

This test program is normally inserted at the end of the polling
sequence which determines the nature of the device that
triggered the interrupt.

Caution: A feature of the break is to preserve the contents of
the program counter plus 2 automatically. Since the break is only
a 1-byte instruction, the programmer may sometimes have to adjust
the contents of the program counter in the stack by using an
incrementing or decrementing instruction in order to resume
execution of the correct address. In particular, the break is exten-
sively used during debugging by writing it over another instruc-
tion in the program. If the program is reassembled prior to execu-
tion, the contents of the program counter which have been saved
will normally have to be decremented by 1.

SUMMARY

We have presented in this chapter the range of techniques used
to communicate with the outside world. From elementary input/
output routines to more complex programs to communicate with
actual peripherals, we have learned to develop all the usual pro-
grams and have even examined the efficiency of benchmark pro-
grams in the case of a parallel transfer and a parallel-to-serial
conversion. Finally, we have learned to schedule the operation of
multiple peripherals by using polling and interrupts. Naturally,
many other exotic input/output devices might be connected to a
system. With the array of techniques which have been presented
so far, and with an understanding of the peripherals involved, it
should be possible to solve most usual problems.

In the next chapter, we will examine the actual characteristics
of the input/output interface chips usually connected to a 6502.
Then, we will consider the basic data structures that the pro-
grammer may consider using.

EXERCISES

Exercise 6.24: A 7-segment LED display can also display digits
other than the hex alphabet. Compute the codes for H,1.J,L,0,P,S,
UYghijlnoprntuy.

252

INPUT/OUTPUT TECHNIQUES

Exercise 6.25: The flow-chart for interrupt management appears

in Figure 6-29 below. Answer the following questions:

a-What is done by hardware, what is done by software?

b-What is the use of the mask?

c-How many registers should be preserved?

d-How is the interrupting device identified?

e-What does the RTI instruction do? How does it differ from
a subroutine return?

f-Suggest a way to handle a stack overflow situation.

g- What is the overhead (“‘lost time’’) introduced by the interrupt
mechanism?

EXECUTE
INSTRUCTION

INTERRUPT
REQUEST

NO

NEXT INSTRUCTION

r SET MASK 1

PRESERVE REGISTERS
(if necessary)

L ‘UNSE‘iMASK j

l IDENTIFY DEVICE
(if necessary) -

l EXECUTE ROUTING J

[RESTORE REGISTERS _]

'

RETURN

Fig. 6-29: Interrupt Logic

253

7
INPUT/OUTPUT DEVICES

INTRODUCTION

We have learned how to program the 6502 microprocessor in
most usual situations. However, we should make a special men-
tion of the input/output chips normally connected to the micro-
processor. Because of the progress in LSI integration, new chips
have been introduced which did not exist before. As a result, pro-
gramming a system requires, naturally, first programming a mi-
croprocessor itself, but also programming the input/output chips.
In fact, it is often more difficult to remember how to program the
various control options of an input/output chip than to program
the microprocessor itself! This is not because the programming in
itself is more difficult, but because each of these devices has its
own idiosyncrasies. We are going to examine here first the most
general input/output device, the programmable input/output chip
(in short a ‘“‘PIO”’), then “improvements’’ over this standard PIO,
now frequently used with the 6502: the 6520, 6530, 6522 and
6532. The complete details are presented in reference D302.

The Standard PIO (6520)

There is no “standard PIO.” However, the 6520 device is essen-
tially analogous in function to all similar PIOs produced by other
manufacturers for the same purpose. The purpose of a PIO is to
provide a multiport connection for input/output devices. (A “port ”
is simply a set of 8 input/output lines). Each PIO provides at least

254

INPUT/OUTPUT DEVICES

two sets of 8-bit lines for I/O devices. Each I/O device needs a data
buffer in order to stabilize the contents of the data bus on output
at least. Our PIO will, therefore, be equipped at a minimum with
a buffer for each port.

In addition, we have established that the microcomputer will
use a handshaking procedure, or else interrupts to communicate
with the I/O device. The PIO will also use a similar procedure to
communicate with the peripheral. Each PIO must, therefore, be
equipped with at least two control lines per port to implement the
handshaking function.

The microprocessor will also need to be able to read the status
of each port. Each port must be equipped with one or more status
bits. Finally, a number of options will exist within each PIO to
configure its resources. The programmer must be able to access a
special register within the PIO to specify the programming op-
tions. This is the control register. In the case of the 6520, the
status information is part of the control register.

le— CAl
DRA
FLBA1 DDRA __PDORA A2
8
00 o 2 x &
[e] 2o moX
oases N | 82 | 98| 482K roma
28 o) 2”8
b3
CRB DDRE PDRB
- 8
g
g5 <:j PORTB
REGISTER | —{ RS0 3%
SELECT | ——{ RSI S
[Ty — le——» CB2
IRGB <+ le— B

Fig. 7-1: Typical PIO

One essential faculty of the PIO is the fact that each line may
be configured as either an input or an output line. The diagram of
a PIO appears in illustration 7-1. The programmer may specify
whether any line will be input or output. In order to program the
direction of the lines, a data direction register is provided for each
port. A “0’’ in a bit position of the data direction register specifies
an input. A ‘‘1”’ specifies an output.

255

PROGRAMMING THE 6502

It may be surprising to see that a “0” is used for input and a *“1”
for output when really “0” should correspond to Output and “1” to
Input. This is quite deliberate: whenever power is applied to the
system, it is of great importance that all the I/O lines be confi-
gured as input. Otherwise, if the microcomputer is connected to
some dangerous peripheral, it might activate it by accident.
When a reset is applied, all registers are normally zeroed and that
will result in configuring all input lines of the PIO as inputs. The
connection to the microprocessor appears on the left of the illus-
tration. The PIO naturally connects to the 8-bit data bus, the mi-
croprocessor address bus, and the microprocessor control bus.
The programmer will simply specify the address of any register
that it wishes to access within the PIO. The 6520, which is com-
patible with Motorola’s 6820, has inherited one of its peculiari-
ties: it is equipped with 6 internal registers. However, one can
specify only one out of four registers! The way this problem is
solved is by switching bit position 2 of the control register. When
this bitis a *‘0,” the corresponding data direction register may be
selected. When it is a “‘1,” the data register may be selected.
Therefore, whenever the programmer wants to write data into the
data direction register, he will first have to make sure that bit 2
of the appropriate control register is zero, before he can select
this register. This is somewhat awkward to program, but it is im-
portant to remember in order to avoid painful difficulties.

7 [] 5 4 3 2 1

DDRA CAl
CRA IRQAI IRQA2 CA2 CONTROL access | controL
.
—————— S— ~ p——
READ-ONLY READ/WRITE BY MPU

Fig. 7-2: PIA Control Word Format

RS1 RSO CRA 2 CRB 2 REGISTER SELECTED
0 o 1 - PERIPHERAL REGISTER A
[] 0 - DATA DIRECTION REGISTER A
0 1 - - CONTROL REGISTER A
1 0 - 1 PERIPHERAL REGISTER B
1 1} - 0 DATA DIRECTION REGISTER B
1 1 - - CONTROL REGISTER B

Fig. 7-3: Addressing PIA Registers

256

INPUT/OUTPUT DEVICES

To clarify the effect of the address selection on the 6520, the
address selection table appears above. RSO and RS1 are two
register-selection signals which are derived from the address bus.
In other words, they represent two bits of the address specified by
the programmer. CRA is the control register for port A. CRA (2)
is bit 2 of this register. CRB is the control register for port B.

The Internal Control Register

The Control Register of the 6520 specifies, as we have seen, in
bit position 2, a selection mode for the internal registers of the
port. In addition, it provides a number of options for generating or
sensing interrupts, or for implementing automatic handshake
functions. The complete description of the facilities provided is
not necessary here. Simply, the user of any practical system which
uses the 6520 will have to refer to the data sheet showing the
effect of setting the various bits of the control register. Whenever
the system is initialized, the programmer will have to load the
control register of the 6520 with the correct contents for the ex-
pected application.

2 — jt—— PAO
.
RS¢ B — []
.

6530 le—— pA7

[} [~ PBO
. °
A9 ° PB5/CS2
. PB6/CS1
RES ——v=] [~— PB7/IRQ
VsS vce

Fig. 7-4: 6530 Pinout

257

PROGRAMMING THE 6502

The 6530

The 6530 implements a combination of four functions, RAM,
ROM, PIO, and TIMER. The RAM is a 64x8 memory. The ROM
is a 1 Kx8 memory. The timer provides the programmer with mul-
tiple interval timing facilities. The PIO section is essentially ana-
logous to the 6520, which we have described: There are two ports,
each with a data register and a data direction register. A 0’ ina
given bit position of the direction register specifies an input,
while a *‘1”’ specifies an output.

The programmable interval timer can be programmed to count
up to 256 intervals (it has 8 bits internally). The programmer may
specify the time period to be 1, 8, 64, or 1024 times the system clock.
Whenever the count is reached, the interrupt flag of the chip will be
set to a logic ‘“1’’. The contents of the timer are set by means of the
data bus. The four possible time intervals must be specified on lines
A0 and Al of the address bus.

Three pins of port B have a dual role: PB5, PB6, and PB7 may
be used for control functions. Pin PB7, for example, may be pro-
grammed as an interrupt input.

This chip is used, in particular, on the KIM board. (Note:
on the KIM, PB6 is not available.)

Programming a PIO

As an example, here is a program to use a 6520 or a 6522.
(We assume that the control register has already been set).

LDA #FF SET DATA DIRECTION

STA DDRB CONFIGURE B FOR OUTPUT
LDA #00

STA IORB GENERATE ZERO OUTPUT

DDRB is the address of the Data Direction Register of port B for this
PIO. IORB is the Input/Output or data register for port B;
“FF” hexadecimal is ““11111111” binary = all outputs.

The 6522

The 6522, also called “versatile interface adapter” (VIA), is an
improved version of the 6520. In addition to the capabilities of the

258

INPUT/OUTPUT DEVICES

ATA BUS
BUFFER

DATA DIRECTION

le—— CB 1
le—>CB 2

Z
B INTERFACE A
CONTROL
0 : — PERIPHERAL
cs!
Sl CHIP SELECT — INTERFACE B
cs2 > 7S
RSO =1 | REGISTER L
RS) —#1 SELECT o DATA DIRECTION
R/W —>!
EN — L. v (ODRB)
RESET —|
— CONTROL
v (CRB)
IRQB STATUS
Fig. 7-5: Using a PIA: Load Control Register
|
oA (s
(CRA)
D007 DATA BUS CONTROL
D BUFFER
v DDRA!
DATA DIRECTION
BUS INPUT :
— IP?:IPHERAL
CoNTROL INTERFACE A
CSO —of -
cst —o |1, PERIPHERAL
ot ‘C“"’ SELECT] INTERFACE B
Cs2 —»
';:? — I REGISTER - 1>
e SELECT e DATA DIRECTION
R/W —p] |
EN —»} v (DDRB)
RESET. —»}
RESET. — CONTROL
v (CRE)
IRQB STATUS

;

@ PAO-PA7
-

l¢— CB 1
j@——CB 2

Fig. 7-6: Using a PIA: Load Data Direction

259

PROGRAMMING THE 6502

IRQA

EN —o
RESET —&

IRQB

BUS INPUT

DATA DIRECTION

CONTROL

CHIP SELECT

REGISTER
SELECT

M/

Z

PERIPHERAL
INTERFACE A

PERIPHERAL
INTERFACE B

4>

DATA DIRECTION

(DDRB)

CONTROL

L4

(CRB)
17

!

c:> PAO-PA7
C:b PBO-PB7

le—— CB 1
CcB 2

Fig. 7-7: Using a PIA: Read Status

IRQA

DO-D7

CSO —
CS1 ~—
C52 —]
RSO —#
RS1 =
R/W =~
EN —b
RESET —>

IRQB =~

BUS INPUT

CONTROL

i CHIP SELECT

REGISTER
-SELECT

11

[

sTATUs | |
(CRA)

CONTROL

(DDRA)

DATA DIRECTION

INTERFACE A

PERIPHERAL
INTERFACE B

e}

DATA DIRECTION

(DDRB)

CONTROL

(CRB)
N

PAQ-PA7

® PBO-PB7

CB 1
CB 2

Fig. 7-8: Using a PIA: Read Input

INPUT/OUTPUT DEVICES

6520, it provides two programmable interval timers and a serial-
to-parallel, plus parallel-to-serial converter, plus input data latch-
ing. The detailed hardware description of this component is be-
yond the scope of this book. Simply, with the description which
has been provided for the previous components, it should be
simple for the programmer to familiarize himself with the ad-
dressing of the internal registers of this component as well as its
programming. This information is supplied in the manufacturer’s
data sheets. ’

The 6532

The 6532 is a combination chip which includes one 128 x8 RAM,
a PIO with two bi-directional ports, and a programmable interval
timer. It is used on the SYM board, manufactured by Synertek
Systems, which is analogous to the KIM board, manufactured
by MOS Technology and by Rockwell. Again, the user should
carefully examine the data sheets for this component in order to
learn how to address and use the various internal registers.

SUMMARY

Unfortunately, in order to make effective use of such compo-
nents, it will be necessary to understand in detail the function of
every bit, or group of bits, within the various control registers.
These complex new chips automate a number of procedures that
had to be carried out by software or special logic before. In par-
ticular, many of the handshaking procedures are automated with-
in components such as a 6522. Also, some interrupt handling
and detection may be internal. With the information that has
been presented in the preceding chapter, the reader should be able
to read the corresponding data sheets and understand what the
functions of the various signals and registers are.. Naturally, still
new components are going to be introduced which will offer a
hardware implementation of still more complex algorithms.
For a comprehensive description of I/0 devices and techniques, the
reader is referred to the companion volume D302.

261

8

APPLICATION EXAMPLES

INTRODUCTION

This chapter is designed to test your new programming skills by
presenting ‘a collection of utility programs. These programs, or
‘‘routines,” are frequently encountered in applications and are generally
called ‘‘utility routines.”” They will require a synthesis of the knowledge
and techniques presented so far.

We are going to fetch characters from an I/O device and process
them in various ways. But first, let us clear an area of the memory
(this may not be necessary; each of these programs is only presented as
a programming example).

CLEAR A SECTION OF MEMORY

We want to clear (zero) the contents of the memory from ad-
dress BASE + 1 to address BASE + LENGTH, where
length is less than 256.

The program is:

262

APPLICATION EXAMPLES

ZEROM LDX #LENGTH
LDA #0

CLEAR STA BASE, X
DEX
BNE CLEAR
RTS

Note that register X is used as an index to point to the current
location of the memory section to be zeroed.

The accumulator A is loaded only once with the value 0 (all 0’s),
then written at successive memory locations:

BASE + LENGTH, BASE + LENGTH - 1, etc., until X dec-
rements to zero. When X=0, the program returns.

In a memory test for example, this program could be used to zero
a block, then verify its contents.

Exercise 8.1: Write a memory test program which will zero a 256-word
block and verify that each location is 0. Then, it will write all 1’s and
verify the contents of the block. Next, it will write 01010101 and verify
the contents. Finally, it will write 10101010 and verify the contents.

Let us now poll our I/0 devices to find which one needs service.

POLLING 1/0 DEVICES

We will assume that 3 1/O devices are connected to our system.
Their status registers are located at addresses IOSTATUSI,
IOSTATUS2, and IOSTATUS3.

If their status bits are in bit position 7, we will just read the status

registers, and test their sign bits. If the status bits are anywhere else,
we will take advantage of the BIT instruction of the 6502:

263

PROGRAMMING THE 6502

TEST LDA MASK
BIT IOSTATUSI
BNE FOUNDI1
BIT IOSTATUS2
BNE FOUND 2
BIT IOSTATUS3
BNE FOUND3
(failure exit)

The MASK will contain, for example, “00100000”’ if we test bit
position 5. As a result of the BIT instruction, the Z bit of the
status flags will be set to 0 if “MASK AND IOSTATUS” is non-
zero i.e. if the corresponding bit of IOSTATUS matches the one
in MASK. The BNE instruction (branch if non-equal to zero)
will then result in a branch to the appropriate FOUND routine.

GETTING CHARACTERS IN

Assume we have just found that a character is ready at the key-
board. Let us accumulate characters in a memory area called
buffer until we encounter a special character called SPC, whose
code has been previously defined.

The subroutine GETCHAR will fetch one character from the
keyboard (see Chapter 6 for more details) and leave it in the ac-
cumulator. We assume that a maximum of 256 characters will be
fetched before an SPC character is found. '

STRING LDX #0 INITIALIZE INDEX TO ZERO
NEXT JSR GETCHAR

CMP #SPC IS IT THE BRK CHAR?

BEQ ouT IF SO, FINISHED

STA BUFFER, X NO: SAVE CHAR

INX INCREMENT POINTER

JMP NEXT GET NEXT CHAR
ouT RTS

APPLICATION EXAMPLES

Exercise 8.2: Let us improve this basic routine:
a-Echo the character back to the device (for a Teletype, for example)
b-Check that the input string is no longer than 256 characters

We now have a string of characters in a memory buffer. Let us
process them in various ways.

TESTING A CHARACTER

Let us determine if the character at memory location LOC is
equal to 0, 1, or 2:

ZOT LDA LOC
CMP #$00
BEQ ZERO
CMP #301
BEQ ONE
CMP #302
BEQ TWO
JMP NOTFND

We simply read the character, then use the CMP instruction to check
its value.

Let us run a different test now.

BRACKET TESTING

Let us determine if the ASII character at memory location LOC
is a digit between 0 and 9:

BRACK LDA #840
ADC #840 FORCE OVERFLOW
LDA LOC
ORA #8380 SETBIT 7=1
CMP #3B0 ASCIIO
BCC TOOLOW
CMP #3B9 ASCII9
BEQ ouT 9 EXACTLY
BCS TOOHIGH
ouT CLC
CLV
RTS

265

PROGRAMMING THE 6502

TOOLOW SEC SET C TO ONE
CLV
RTS

TOOHIGH RTS (CIS ONE)

ASCII 0 is represented in hexadecimal by ‘B0’
ASCII 9 is represented in hexadecimal by ‘“B9”’

Remember that when using a CMP instruction, the carry bit will be
set if the value of the literal that follows is less than or equal to the
accumulator. It will be reset (0) if greater.

If BO is greater than the character, our character is too low, and
a branch occurs.

We then compare it against B9. If it is less than or equal to 9,
all is well, and we exit. Otherwise, we go to TOOHIGH.

When we exit from this program, we want to know if the number
is TOOLOW, TOOHIGH, or else between 0 and 9. This will be
indicated by the flags C and V. V is not altered by CMP, whereas Z, N

and C are.

When returning from the subroutine, a “0’in V indicates “too low,” a
“1” in V indicates “too high,” and a “0” in C indicates a correct digit

between 0 and 9.

Naturally, other conventions could be used, such as loading a digit
in the accumulator to indicate the result of the tests.

Exercise 8.3: Simplify the above program by testing against the
ASCII character which follows ‘9" instead of testing against 9
exactly.

Exercise 8.4: Determine if an ASCII character contained in the
accumulatoris a letter of the alphabet.

266

APPLICATION EXAMPLES

When using an ASCII table, you will notice that parity is often
used. (The example above does not use parity.) For example, the
ASCII for ““0”’ is “‘0110000,”’ a 7-bit code. However, if we use odd
parity,(for example we guarantee that the total number of ones
in a word is odd), then the code becomes ‘“10110000.”” An extra
““1” is added to the left. This is ‘‘B0’’ in hexadecimal. Let us there-
fore develop a program to generate parity.

PARITY GENERATION
This program will generate an even parity in bit position 7:
PARITY LDX #807 BIT COUNT
LDA #$00

STA ONECNT COUNT OF 1I'S
LDA CHAR READ CHARACTER

ROL A DISCARD BIT 7
NEXT ROL A NEXT BIT
BCC ZERO ISITA1?
ONE INC ONECNT
ZERO DEX DECREMENT BIT COUNT
BNE NEXT LAST BIT?
ROL A RESTORE BIT 0
ROL A DISCARD BIT
LSR ONECNT RIGHTMOST BIT IS PARITY
ROR A PUTITINA
RTS

Register X is used to count bits as they are shifted left from the
accumulator. Every time that a “1” is shifted off the left of A
(it is tested by BCC), the one-counter is incremented. When 8
bits have shifted (the program ignores bit 7 which will be
the parity bit), A is shifted left two more times so that bit 6 is on
the left of A.

The correct parity bit is the right-most bit of ONECNT; it is installed

into the carry bit by LSR and becomes bit 7 of A. Another ROR
A copies this bit back into position 7 of A, and we are finished.

267

PROGRAMMING THE 6502

Exercise 8.5: Using the above program as an example, verify the
parity of a word. You must compute the correct parity, then com-
pare it to the one expected.

CODE CONVERSION: ASCII to BCD

Converting ASCII to BCD is very simple. We will observe that
the hexadecimal representations of ASCII characters 0 to 9 are BO to B9
with parity, or 30 to 39 without parity. The BCD representation is
simply obtained by dropping the ‘“B’’; that is, by masking off the left
nibble (4 bits):

LDA CHAR
AND #$OF MASK OFF LEFT NIBBLE
STA BCDCHAR

Exercise 8.6: Write a program to convert BCD to ASCIL.

Exercise 8.7: (more difficult) Write a program to convert BCD to
binary.

Hint: N3 N2 Ni: No in BCD is (N3 x 10) + N2) x 10 + Ni) x 10
+ No in binary.

To multiply by 10, use a left shift (=x2), another left shift (=x4),
an ADC (=x5), and another left shift:(=x10).

In full BCD notation, the first word may contain the count of
BCD digits, the next nibble may contain the sign, and every successive
nibble may contain a BCD digit. (We assume no decimal point), The last
nibble of the block may be unused.

FIND THE LARGEST ELEMENT OF A TABLE

The beginning address of the table is contained at memory ad-
dress BASE in page zero. The first entry of the table is the num-
ber of bytes it contains. This program will search for the largest
element of the table. Its value will be left in A, and its position
will be stored in memory location INDEX.

268

APPLICATION EXAMPLES

This program uses registers A and Y, and will use indirect addressing,
so that it can search any table anywhere in the memory.

MAX LDY #0 THIS IS OUR INDEX TO TABLE
LDA (BASE), Y ACCESS ENTRY 0=LENGTH
TAY SAVEITINY
LDA #0 MAX VALUE INITIALIZED TO ZERO
' STA INDEX INITIALIZE INDEX TO ZERO
LOOP CMP (BASE), Y ISCURRENT MAX ELEMENT?

BCS NOSWITCH YES?
LDA (BASE), Y LOAD NEW MAX

STY INDEX LOCATION OF MAX
NOSWITCH DEY POINT TO NEXT ELEMENT

BNE LOOP KEEP TESTING?

RTS FINISH IF Y=0

This program tests the Nth entry first. If it is greater than 0, it
goes in A, and its location is remembered into INDEX. The (N-1)st
entry is then tested, etc.

This program works for positive integers.

Exercise 8.8: Modify the program so that it works also for nega-
tive numbers in two’s complement.

Exercise 8.9: Will this program also work for ASCII characters?

Exercise 8.10: Write a program which will sort N numbers in as-
cending order.

Exercise 8.11: Write a program which will sort N names (3 char-
acters each) into alphabetical order.

SUM OF N ELEMENTS

This program will compute the 16-bit sum of N entries of a table.
The starting address of the table is contained at memory address
BASE inpage zero. The first entry of the table contains the num-
ber of elements N. The 16-bit sum will be left in memory locations
SUMLO and SUMHI. If the sum should require more than 16
bits, only the lower 16 will be kept. (The high-order bits are said to be
truncated.)

269

PROGRAMMING THE 6502

This program will modify registers A and Y. It assumes 256
elements maximum.

LDA #0 INITIALIZE SUM

STA SUMLO INITIALIZE SUM

STA SUMHI INITIALIZE SUM

TAY INITIALIZE Y TO ZERO
LDA (BASE),Y GETN

TAY INTOY

CLC CLEAR CARRY FOR ADC

ADLOOP LDA (BASE), Y GET NEXT ELEMENT
ADC SUMLO ADD IT TO SUMLO
STA SUMLO SAVE RESULT
BCC NOCARRY CARRY?
INC SUMHI ADD IT TO SUMHI

CLC FOR NEXT SUM
NOCARRY DEY NEXT ELEMENT

BNE ADLOOP AGAIN IF Y NOT ZERO

RTS

This program is straightforward and should be self-explanatory.

Exercise 8.12: Modify this program to compute:
a) a 24-bit sum,

b) a 32-bit sum,

¢) to detect any overflow.

A CHECKSUM COMPUTATION

A checksum is a digit, or set of digits, computed from a block of
successive characters. The checksum is computed at the time t:he
data is stored and put at the end. In order to verify the integrity

of the data, the data is read and the checksum is. repomputed and
compared against the stored value. A discrepancy indicates an error

or a failure.

270

APPLICATION EXAMPLES

Several algorithms are used. Here, we will :xclusive-OR all bytes
in a table of N elements, and leave the result in the accumulator.
As usual, the base of the table is stored at the address BASE in
page zero. The first entry of the table is its number of elements N.
The program modifies A and Y. N must be less than 256.

CHECKSUM LDY #0 POINT TO FIRST ENTRY
LDA (BASE), Y GETN
TAY STOREITINY
LDA #0 INITIALIZE CHECKSUM
CHLOOP EOR (ADDR), Y EOR NEXT ENTRY
DEY POINT TO NEXT
BNE CHLOOP KEEP GOING
RTS
COUNT THE ZEROES

This program will count the number of zeroes in our usual table,
and leave it in register X.

It modifies A,X,Y:

ZEROES LDY #0 POINT TO FIRST ENTRY
LDA (ADDR),Y GETN
TAY STOREITINY
LDX #0 INITIALIZE NO. OF ZEROES

ZLOOP LDA (ADDR), Y GET NEXT ENTRY
BNE NOTZ IS IT ZERO?

INX YES. COUNT IT

NOTZ DEY POINT TO NEXT
BNE ZLOOP KEEP GOING
RTS

Exercise 8.13: Modify this program to count:
a-the number of stars (the character ***°)

b-the number of letters of the alphabet

c-the number of digits between 0 and 9

A STRING SEARCH

A string of characters is stored in the memory, as indicated in
Fig. 8-1. We will search the string for the occurrence of a shorter
one, called a template (TEMPLT), of length TPTLEN. The length
of the original string is STRLEN, and the program will return

2N

PROGRAMMING THE 6502

with register X containing the location where the TEMPLT was
found, and FF hexadecimal otherwise. The flowchart for the pro-
gram is shown in Fig. 8-2. The string is first scanned for the oc-
currence of the first character in TEMPLT. If this first character
is never found, the program will exit with a failure. If this first
character is found, the second character will be matched against
the next one in the string. If that fails, the search is restarted for
the first character since there might be another occurrence of this
first character within the original string. If the first and the sec-
ond one match, the search will proceed with the following charac-
ters of TEMPLT in the same manner. The corresponding pro-
gram is shown in. Fig. 8-3. Note that Register X is used as the
running pointer during the search pointing to the current element
of string. Indexed addressing is naturally used to retrieve the
current element of string.

$10

CHKPTR

TEMPTR S

STRING LENGTH

TEMPLATE LENGTH

-

(SEARCH START POINTER

STRING

$50

TEMPLATE

SFF

Fig: 8-1: String Search: The Memory

272

SEARCH START
POINTER=0

y

STRTPTR=STRTPTR
+1

APPLICATION EXAMPLES

CHKPTR=0

STRTPTR

STRING
LENGTH?

Y

DONE:
NOT FOUND

Fig. 8-2: Program Flowchart: String Search

273

PROGRAMMING THE 6502

LINE # LOC

0002
0003
0004
0005
0006
0007
0008
0009
0010
(1))
0012
0013
0014
0013
0014
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0033
0036
0037
0038
0039
0040
0041

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0010
o011
0012
0013
0014
0200
0202
0204
0206
0208
0209
0208
0200
020F
0210
0212
0212
0214
0214
0218
0214
021C
021€
0220
0223
0225
0228
0224
022¢
0220

CODE

A2 00
AS 50
b5 20
FO 08

E4 12
b0 FS
A2 FF

86 1t

49 00
85 10
E6 11
E6 10
a4 10
c4 13
FO oC
9 350
M1
9 20
00 DE
FO EA
0

SUMMARY

In this chapter, we have presented common utility routines which use
combinations of the techniques described in previous chapters. These
routines should now allow you to start designing your own programs.
Many of them have used a special data structure, the table. However,
other possibilities exist for structuring data, and these will now be

reviewed.

274

LINE

$STRING SEARCH.

sFINDS LOCATION IN STRING OF LENSTN ‘STRLEN-
SSTARTING AT “STRING’ OF A TEMPLATE Of
SLENGTH ‘TPTLEN” STARTING AT “TENPLT”, AND
SRETURNS UITH X=LOCATION OF TEMPLATE

sIN STRING IF FOUND, OR X=$FF IF NOT FOUND.

;TR!IG = $20 s1ST LOCATION OF STRING.
TENPLT = 830 +18T LOCATION OF TEMPLATE.
s s 910

CHKPTR s=set
TENPTR 83841

STRLEN o304} SLENBTH OF STRING.
TPTLEN sse+1 SLENGTH OF TEMPLATE.
s =z $200
LDX %0 SRESET SEARCH START POINTER.
NXTPOS LDA TENPLT +18 FIRST ELENENT OF TEMPLATE...
CHP STRING, X s CURRENT STRING ELENENT?
DEQ CHECK sIF YES, CHECK FOR REST OF MATCH.
NXTSTR INX . SINCREMENT SEARCH START COUNTER.
CPX STRLEN $15 IT EQUAL TO STRING LENGTH?
BNE NXTPOS sNO, CHECK NEXT STRING POSITION.
LDX BSFF sYES, SET ‘NOT FOUND’ INDICATOR.
RTS sRETURN: ALL CHRS CHECKED.
CHECK STX TENPTR sLET TEMPORARY POINTER=
sCURRENT STRING POINTER.
LhA 80
STA CHKPTR SRESET TENPLATE POINTER.
CHKLP INC TEMPTR s INCRENENT TEMPORARY POINTER.
INC CHKPTR s INCREMENT TENPLATE POINTER.
LDY CHKPTR
CPY TPTLEN sDOES TEMPLATE POINTER=TENPLATE LENGTH?
DEQ FOUND sIF YES, TEMPLATE MATCHED.
LbA TEMPLT,Y sLOAD TENPLATE ELEMENT.
LDY TEMPTR

CHP STRING,Y SCONPARE TO STRING CHR.
BNE NXTSTR sIF NO MATCH, CHECK NEXT STRING CHR.

BEQ CHKLP s1IF MATCH, CHECK NEXT CHR.
FOUND RTS $DONE.
«END

Fig. 8-3: String Search Program

9

DATA STRUCTURES
PART I: DESIGN CONCEPTS

INTRODUCTION

The design of a good program involves two tasks: algorithm
design and data structures design. In most simple programs, no
significant data structures are involved, so the main problem that
must be surmounted to learn programming is learning how to
design algorithms and code them efficiently in a given machine lan-
guage. This is what we have accomplished here. However, design-
ing more complex programs also requires an understanding of data
structures. Two data structures have already been used through-
out the book: the table, and the stack. The purpose of this chapter
is to present other, more general, data structures that you may
want to use. This chapter is completely independent from the
microprocessor, or even the computer, selected. It is theoretical
and involves logical organization of data in the system. Specialized
books exist on the topic of data structures, just like specialized
books exist on the subject of efficient multiplication, division or
other usual algorithms. This single chapter, therefore, should be con-
sidered as an overview, and it will be necessarily limited to the essentials
only. It does not claim to be exhaustive.

Let us now review the most common data structures:

POINTERS

A pointer is a number which is used to designate the location of
the actual data. Every pointer is an address. However, every ad-

275

PROGRAMMING THE 6502

dress is not necessarily called a pointer. An address is a pointer on-
ly if it points at some type of data or at structured information. We
have already encountered a typical pointer, the stack pointer,
which points to the top of the stack (or usually just over the top of
the stack). We will see that the stack is a common data structure,
called a LIFO structure.

As another example, when using indirect addressing, the in-
direct address is always a pointer to the data that one wishes to
retrieve.

Exercise 9.1: Examine Figure 9-1. At address 15 in the memory,
there is a pointer to Table T. Table T starts at address 500. What
are the actual contents of the pointer to T?

— POINTERTO T

TABLE T

Fig 9-1: An Indirection Pointer

LISTS

Almost all data structures are organized as lists of various
kinds.

Sequential Lists

A sequential list, or table, or block, is pfobably the simplest data
structure, and one that we have already used. Tables are normally

276

DATA STRUCTURES

ordered in function of a specific criterion, such as, for example,
alphabetical ordering, or numerical ordering. It is then easy to
retrieve an element in a table, using, for example, indexed address-
ing, as we have done. A block normally refers to a group of data
which has definite limits but whose contents are not ordered. It
may, for example, contain a string of characters. Or it may be a
sector on a disk. Or it may be some logical area (called segment) of
the memory. In such cases, it may not be easy to access a random

element of the block.
In order to facilitate the retrieval of blocks of information, directories

are used.

Directories

A directory is a list of tables, or blocks. For example, the file
system will normally use a directory structure. As a simple exam-
ple, the master directory of the system may include a list of the
users’ names. This is illustrated in Figure 9-2. The entry for user
“John’’ points to John'’s file directory. The file directory is a table
which contains the names of all of John's files and their location.
This is, again, a table of pointers. In this case, we have just de-
signed a two-level directory. A flexible directory system will allow
the inclusion of additional intermediate directories, as may be
found convenient by the user.

USER DIRECTORY

JOHN'S
FILE DIRECTORY

JOHN
JOHN'S FILE

ALPHA

ALPHA

SIGMA DATA

SIGMA

DATA

Fig. 9-2: A Directory Structure

277

PROGRAMMING THE 6502

Linked List

In a system there are often blocks of information which repre-
sent data, or events, or other structures, which cannot be easily
moved. If they could be easily moved, we would probably assemble
them in a table in order to sort them or structure them. The
problem now is that we wish to leave them where they are and
still establish an ordering between them such as first, second,
third, and fourth. A linked list will be used to solve this pro-
blem. The concept of a linked list is illustrated by Figure 9-3. In
the illustration, we see that a list pointer, called FIRSTBLOCK,
points to the beginning of the first block. A dedicated location
within Block 1, such as, perhaps, the first or the last word of it,
contains a pointer to Block 2, called PTR1. The process is then re-
peated for Block 2 and Block 3. Since Block 3 is the last entry in
the list, PTR3, by convention, contains a special ‘‘nil’’ value, or
else points to itself, so that the end of the list can be detected. This
structure is economical as it requires only a few pointers (one per
block) and prevents the user from having to physically move the
blocks in the memory.

FIRST
—|
BLOCK

PTR 2

«
slocks [2[7]

BLOCK 2

PTR1

BLOCK 1

Fig. 9-3: A Linked List

Let us examine, for example, how a new block will be inserted.
This is illustrated by Figure 9-4. Let us assume that the new block
is at address NEWBLOCK, and is to be inserted between Block 1
and Block 2. Pointer PTR1 is simply changed to the value NEW-
BLOCK, so that it now points to Block X. PTRX will contain the
former value of PTRI (i.e., it will point to Block 2). The other
pointers in the structure are left unchanged. We can see that the inser-
tion of a new block has simply required updating two pointers in
the structure. This is clearly efficient.

Exercise 9.2: Draw a diagram showing how Block 2 would be
removed from this structure.

Several types of lists have been developed to facilitate specific

278

DATA STRUCTURES

NEW BLOCK et
BLOCK X

=

Fig. 9-4: Inserting a New Block

PIR X

H

FIRST
——
BLOCK

BLOCK 1 BLOCK 3

P[j

PTR 2

PTR 1

types of access or insertions or deletions to or from the list. Let us
examine some of the most frequently used types of linked lists:

Queue

A queue is formally called a FIFO, or first-in-first-out list. A
queue is illustrated in Figure 9-5. To clarify the diagram, we can
assume, for example, that the block on the left is a service routine
for an output device, such as a printer. The blocks appearing on the
right are the request blocks from various programs or routines, to
print characters. The order in which they will be serviced is the

SERVICE ROUTINE BLOCK 1

NEXT —| PIR1
BLOCK 3

E PIR3

L]
BLOCK 2
PTIR2 —
Fig. 9-5: AQueue

279

PROGRAMMING THE 6502

order established by the waiting queue. It can be seen that the
next event which will obtain service is Block 1, then Block 2, and finally
Block 3. In a queue, the convention is that any new event arriving in the
queue will be inserted at the end of it. Here it will be inserted after
PTR3. This guarantees that the first block to have been inserted in the
queue will be the first one to be serviced. It is quite common in a com-
puter system to have waiting queues for a number of events whenever
they must wait for a scarce resource, such as the processor or some
input/output device.

Stack

The stack structure has already been studied in detail through-
out the book. It is a last-in-first-out structure (LIFO). The last ele-
ment deposited on top of it is the first one to be removed. A stack
may be implemented as a sorted block, or else it may be imple-
mented as a list. Because most stacks in microprocessors are used
for high speed events, such as subroutines and interrupts, a contin-
uous block is usually allocated to the stack rather than using a
linked list.

Linked List vs. Block

Similarly, the queue could be implemented as a block of reserved
locations. The advantage of using a continuous block is fast
retrieval and the elimination of the pointers. The disadvantage is
that it is usually necessary to dedicate a fairly large block to ac-
commodate the worst-case size of the structure. Also, it makes it
difficult or impractical to insert or remove elements from within
the block. Since memory is traditionally a scarce resource, blocks
have been traditionally reserved for fixed-size structures or else
structures requiring the maximum speed of retrieval, such as the
stack.

Circular List

“Round robin” is a common name for a circular list. A circular
list is a linked list where the last entry points back to the first one.
This is illustrated in Figure 9-6. In the case of a circular list, a
current-block pointer is often kept. In the case of events or pro-
grams waiting for service, the current-event pointer will be moved
by one position to the left or to the right every time. A round-robin
usually corresponds to a structure where all blocks are assumed to

280

DATA STRUCTURES

have the same priority. However, when performing a search a circular
list may also be used as a subcase of other structures simply to facilitate
the retrieval of the first block after the last one.

As an example of a circular list, a polling program usually goes
around in a round-robin fashion, interrogating all peripherals and
then coming back to the first one.

=3 =F

1

CURRENT EVENT

Fig. 9-6: Round-Robin is Circular List

‘Trees

Whenever a logical relationship exists between all elements of a
structure (this is usually called a syntax), a tree structure may be
used. A simple example of a tree structure is a descendant tree or a
genealogical tree. This is illustrated in Figure 9-7. It can be seen
that Smith has two children: a son, Robert, and a daughter, Jane.
Jane, in turn, has three children: Liz, Tom and Phil. Tom, in turn
has two more children: Max and Chris. However, Rcbert, on the
left of the illustration, has no descendants.

This is a structured tree. We have, in fact, already encountered
an example of a simple tree in Figure 9-2. The directory structure
is a two-level tree. Trees are used to advantage whenever elements
may be classified according to a fixed structure. This facilitates in-
sertion and retrieval. In addition, trees may establish groups of infor-
mation in a structured way. Such information may be required for later
processing, such as in a compiler or interpreter design.

Doubly-Linked Lists

Additional links may be established between elements of a list.
The simplest example is the doubly-linked list. This is illustrated
in Figure 9-8. We can see that we have the usual sequence of links
from left to right, plus another sequence of links from right to left.

281

PROGRAMMING THE 6502

SMITH

/\

ROBERT

uz

JANE

L

\

oM

PHIL

AN

MAX

CHRIS

Fig. 9-7: Genealogical Tree

The goal is to allow easy retrieval of the element just before the
one which is being processed, as well as the one just after it. This costs

an extra pointer per block.

- BLOCK1

BLOCK 2

BLOCK 3

Fig. 9-8: Doubly-Linked List

SEARCHING AND SORTING

Searching and sorting elements of a list depend directly on the
type of structure which has been used for the list. Many searching
algorithms have been developed for the most frequently used data
structures. We have already used indexed addressing. This is pos-
sible whenever the elements of a table are ordered in function of a
known criterion. Such elements may then be retrieved by their

numbers.

Sequential searching refers to the linear scanning of an entire
block. This is clearly inefficient but, for lack of a better technique, may

have to be used whenever the elements are not ordered.

282

DATA STRUCTURES

Binary, or logarithmic searching, attempts to find an element in a
sorted list by dividing the search interval in half at every step.
Assuming, for example, that we are searching an alphabetical list,
one might start in the middle of a table and determine if the name
for which we are looking is before or after this point. If it
is after this point, we will eliminate the first half of the table and
look at the middle element of the second half. We again compare
this entry to the one for which we are looking, and restrict our search
to one of the two halves, and so on. The maximum length of a
search is then guaranteed to be log,n, where n is the number of
elements in the table.

Many other search techniques exist.

SUMMARY

This section was intended as only a brief presentation of typical
data structures which may be used by a programmer. Although
most common data structures have been rationalized in types and
given a name, the overall organization of data in a complex system
may use any combination of them, or require the programmer to
invent more appropriate structures. The array of possibilities is
limited only by the imagination of the programmer. Similarly, a
number of well-known sorting and searching techniques have been
developed to cope with the usual data structures. A comprehensive
description is beyond the scope of this book. The contents of this
section were intended to stress the importance of designing appro-
priate data structures for the data to be manipulated and to pro-
vide the basic tools to that effect.

9

DATA STRUCTURES
PART II: DESIGN EXAMPLES

INTRODUCTION

Actual design examples will be presented here for typical data
structures: table, linked list, sorted tree. Practical sorting, search-
ing and insertion algorithms will be programmed for these struc-
tures. Additional advanced techniques such as hashing and merg-
ing will also be described.

The reader interested in these advanced programming tech-
niques is encouraged to analyze in detail the programs presented
in this section. However, the beginning programmer may skip this
section initially, and come back to it when he feels ready for it.

A good understanding of the concepts presented in the first part
of this chapter is necessary to follow the design examples. Also,
the programs will use all the addressing modes of the 6502, and
integrate many of the concepts and techniques presented in the
previous chapters.

Four structures will now be introduced: a simple list, an alpha-
betical list, a linked list plus directory, and a tree. For each struc-
ture, three programs will be developed: search, enter and delete.

In addition, three specialized algorithms will be described separately
at the end of the section: hashing, bubble-sort, and merging.

284

DATA STRUCTURES

ENTLEN M= LENG TH OF ENTRY
TABLEN N= NUMBER OF ENTRIES
TAB BASE - —]
— LABEL =
ENTRY DATA MBYTES

/\/\/\/\A | a@————— ENTER NEW ELEMENT

Fig. 9-9: The Table Structure

c A
c LABEL
c
D
ELENl\ENT ENTLEN
(DATA
AN \NNNANNM s
o ||/ Y
C LABEL
c
ELEMENT 0 ENTLEN
DATA
/\/\/\/:/\/\/\]
' \

Fig 9-10: Typical List Entries in the Memory

285

PROGRAMMING THE 6502

DATA REPRESENTATION FOR THE LIST

Both the simple list and the alphabetic list will use a common re-
presentation for each list element:

cccon%?oo

NN— T ™ ———
3-byte label data

Each element or ‘“‘entry’’ includes a 3-byte label and an n-byte
block of data with n between 1 and 253. Thus, each entry uses, at
most, one page (256 bytes). Within each list, all elements have the
same length (see Fig. 9-10). The programs operating on these two
simple lists use some common variable conventions:

ENTLEN is the length of an element. For example, if each ele-

ment has 10 bytes of data, ENTLEN = 3 + 10 = 13 bytes

TABASE is the base of the list or table in the memory

POINTR is a running pointer to the current element

OBJECT is the current entry to be inserted or deleted

TABLEN is the number of entries

All labels are assumed to be distinct. Changing this convention
would require a minor change in the programs.

A SIMPLE LIST

The simple list is organized as a table of n elements. The
elements are not sorted (see Fig. 9-11).

When searching, one must scan through the list until an entry is
found or the end of the table is reached. When inserting, new en-
tries are appended to the existing ones. When an entry is deleted,
the entries in higher memory locations, if any, will be shifted down
to keep the table continuous.

Searching

A serial search technique is used. Each entry’s label field is com-
pared in turn to the OBJECT's label, letter by letter.

The running pointer POINTR is initialized to the value of
TABASE.

The index register X is initialized to the number of entries con-
tained in the list (stored at TABLEN).

286

DATA STRUCTURES

TABASE — gl ELEMENT 1 I ENGTH =
ELEMENT 2
FOINTR — oy
ELEMENT n (TABLEN =n)
FREE SPACE —etpe) FREE SPACE ST
OBJECT
10 BE INSERTED

Fig. 9-11: The Simple List

The search proceeds in the obvious way, and the corresponding
flowchart is shown in Fig. 9-12. The program appears in Fig.
9-16 at the end of this section (program “SEARCH").

Element Insertion

When inserting a new element, the first available memory block
of (ENTLEN) bytes at the end of the list is used (see Fig. 9-11).

The program first checks that the new entry is not already in the
list (all labels are assumed to be distinct in this example). If not, it
increments the list length TABLEN, and moves the OBJECT to
the end of the list. The corresponding flowchart is shown on Fig.
9-13.

The program is shown on Fig. 9-16 at the end of this section. It is
called “NEW" and resides at memory locations 0636 to 0659.

Element Deletion

In order to delete an element from the list, the elements follow-
ing it at higher addresses are merely moved up by one elemen;_position.
The length of the list is decremented. This is illustrated in Fig. 9-14.

287

PROGRAMMING THE 6502

SEARCH

{

COUNTER =
NUMBER OF ENTRIES

YES
FAILURE EXIT
| ' | NO
READ ENTRY
(3 LETTERS)
YES
FOUND
(SET A TO “FF*)
NO
COUNTER = COUNTER - |
YES
FAILURE EXIT
NO
POINT TO NEXT ENTRY

Fig. 9-12: Table Search Flowchart

288

NO

DATA STRUCTURES

YES exIT

L SAVE OLD TABLE LENGTH J

!

[INCREMENT TABLE LENGTH J

'

POINT AFTER
END OF TABLE

!

[INSERT OBJECT

)

END

Fig. 9-13: Table Insertion Flowchart

The corresponding program is straightforward and appears in
Fig. 9-16. It is called “DELETE” and resides at memory ad-
dresses 0659 to 0686. The flowchart is shown in Fig. 9-15.

Memory location TEMPTR is used as a temporary pointer point-

ing to the element to be moved up.

Index register Y is set to the length of a list element, and used to
automate block transfers. Note that indirect indexed addressing is

used:

DEY
LDA
STA
CPY
BNE

(0672) LOOPE

(TEMPTR), Y
(POINTR), Y
#0

LOOPE

During the transfer, POINTR always points to the ‘‘hole” in the
list, i.e. the destination of the next block transfer.
The Z flag is used to indicate a successful deletion upon exit.

289

PROGRAMMING THE 6502

BEFORE AFTER

OELLEE

OLEBEE

DELETE ——»] ’>
MOVE
TEMPTR ——ss
MOVE
Fig. 9-14: Deleting An Entry (Simple List)
ALPHABETIC LIST

The alphabetic list, or ‘‘table’’ unlike the previous one, keeps all
its elements sorted in alphabetic order. This allows the use of
faster search techniques then the linear one. A binary search is
used here.

Searching

The search algorithm is a classical binary search. Let us recall
that the technique is essentially analogous to the one used to find a
name in a telephone book. One usually starts somewhere in the middle
of the book, and then, depending on the entries found there, goes either
backwards or forwards to find the desired entry. This method is fast,
and it is reasonably simple to implement.

The binary search flowchart is shown in Fig. 9-17, and the pro-
gram is shown in Fig. 9-22.

This list keeps the entries in alphabetical order and retrieves
them by using a binary or “logarithmic’ search. An example is
shown in Fig. 9-18.

290

DATA STRUCTURES

'

FIND ENTRY

our

YES

DECREMENT TABLE LENGTH

FIND NBR OF ENTRIES
AFTER OBJECT IN TABLE

YES
EXIT

{ NO

SHIFT ONE ENTRY UP

\
DECREASE COUNT OF

ENTRIES REMAINING
AFTER THE ONE SHIFTED

Y

NO
ourt

Fig. 9-15: Table Deletion Flow Chart

291

PROGRAMMING THE 6502

LINE B LOC CODE LI

0002 0000 TABASE = 810

0003 0000 POINTR = 812

0004 0000 TABLEN = 814

0005 0000 O0DJECT = #15

0006 0000 ENTLEN = $17

0007 0000 TERPTR = $18

0008 0000 :

0009 0000 4600

0010 0600 :

0011 0400 45 10 SEARCH LDA TABASE $INITIALIZE POTNTER
0012 0402 85 12 STA POINTR

0013 0604 45 11 LDA TADASE#!

0014 0606 05 13 STA POINTRe1

0015 0408 44 14 LDX TABLEN $STORE TABLEN AS A VARIASLE
0014 060A FO 29 0 OUT $CMECK FOR 0 TABLE
0017 040C A0 00 ENTRY LDY 90 $CONPARE FIRST LETTERS
0018 040E D1 15 LDA (OBJECT), ¥

0019 0410 1 12 NP (POINTR),Y

0020 0612 DO OF DNE M0GODD

0021 0614 €8 ™ ;CONPARE SECOND LETTERS
0022 0615 b1 1S LDA (0BJECT),Y

0023 0617 D1 12 NP (POINTR),Y

0024 0619 0 07 DNE WOG00D

0025 0613 (8 wy SLONPARE THIRD LETTERS
0026 081C B1 15 LBA (OBJECT),Y

0027 081E b1 12 CHP (POINTR),Y

0028 0620 FO 11 BEQ FOUND

0029 0622 CA NOGOOD DEX $SEE NOU RARY ERTRIES ARE LEFT
0030 0623 FO 10 BEQ OUT

0031 0625 4S 17 LA ENTLEN ;ABD ENTLEN T0 POINTER
0032 0627 18 cue

0033 0628 ¢5 12 ADC POINTR

0034 0620 85 12 STA POINTR

0035 062C 90 DE BCC ENTRY

0036 062E E6 13 INC POINTR#!

0037 ‘0630 4C OC 04 NP ENTRY

0038 0633 A9 FF FOUND LDA BSFF ;CLEAR Z FLAG IF FOUND
0039 0435 40 T RTs

0040 0435 ;

0041 0434 :

0042 0636 ;

0043 0636 20 00 06 NEW JSR SEARCH $SEE IF OBJECT IS THERE
0044 0639 DO 1D BNE OUTE

0045 0630 A6 14 LDX TADLEN SCHECK FOR 0 TABLE
0046 063D FO 0B BEQ INSERT

0047 043F 4S5 12 LDA POINTR {POINTER 1S AT LAST ENTRY
0048 0441 18 cLe $+.NUST NOVE IT TO END OF TADLE
0049 0842 45 17 ADC ENTLEN

0050 0644 85 12 STA POINTR

0031 0646 90 02 BEC INSERT

0052 0448 E6 13 INC POINTR#Y

0053 064A E6 14 INSERT INC TADLEN $INCRENENT TADLE LENSTH
0054 044C AD 00 LbY 80 $NOVE ODJECT TO END OF TASLE
0055 OG4E 44 17 LOX ENTLEN

0056 0450 B1 15 LOOP LDA (OBJECT),Y

0057 0652 91 12 STA (POINTR),Y

0038 0434 €8 mwy

0059 0455 CA DEX

0040 0656 DO FB NE LOOP

0061 0458 40 OUTE RS $2 SET IF WAS DONE

0062 0459 :

0063 0659 :

0044 0459 ;

0045 0459 20 00 06 DELETE JSR SEARCH SFIND WHERE OBJECT IS
0066 045C FO 20 BEQ OUTS SEXIT IF NOT FOUND

0067 O045E C6 14 DEC TABLEN ;DECRENENT TABLE LENGTH
0088 0460 CA BEX $SEE NOU NANY ENTRIES ARE

Fig. 9-16: Simple List Programs: Search, Enter, Delete

292

DATA STRUCTURES

0049 0861 FO 26 BEQ DONE $+.AFTER ONE TO BE DELETED
0070 0663 AS 12 ADDEN LDA POINTR 99 ENTLEN TO POINTER AND
0071 0665 18 o $++8AVE AT TENP STORAGE
0072 0666 45 17 ADC ENTLEN

0073 0668 85 18 STA TENPTR

0074 0484 A9 00 LDA BO

0075 046C 45 13 ABC POINTR+1 3ADD CARRY TO HIGN BYTE N
0076 O66E 83 19 STA TENPTR+1

0077 0470 A4 17 LDY ENTLEN

0078 0672 88 LOOPE DEY

0079 0673 B 18 LDA (TENPTR),Y 3SHIFT ONE ENTRY OF NENORY DOUN
0080 0675 91 12 STA (POINTR),Y

Q081 0677 CO 00 CPY 00

0082 0479 DO F? BNE LOOPE

0083 047B CA DEX SDECREMENT ENTRY COUNTER
0084 067C FO 0B BEQ@ DONE

0085 047E A3 18 LDA TENPTR SNOVE TENP TO POINTER

0086 0480 85 12 STA POINTR

0087 0482 AS 19 LDA TENPTR#Y

0088 0484 B85 13 STA POINTR#1

008y 0686 4C 63 06 JHP ADDEM

0090 0489 A9 FF DONE LDA BSFF SCLEAR Z FLAS IF IT UAS DONE
0091 0488 40 0uTS RTS8

0092 048C H

0093 048C H

0094 046C «END

ERRORS = 0000 <0000>

SYNBOL TABLE

SYNDOL VALUE

ADDEN 0643 DELETE 0459 DONE 068F ENTLEN 0017
ENTRY 040C FOUND 0433 INSERT 064a LOOP 0430
LOOPE 0472 NEV 0636 N0BOOD 0422 OBJECT 0015
T 0635 OUTE 0458 OUTS 0608 POINTR 0912
SEARCH 0400 TABASE 0010 TABLEN 0014 TENPTR OM1S

END OF ASSEMBLY

Fig. 9-16: Simple List Programs: Search, Enter, Delete (cont.)

293

PROGRAMMING THE 6502

[FLAGS = 0 J
!

l POINT TO TABLE BASE j
!

LOGICAL POSITION = INCREMENT VALUE
= TABLE LENGTH/2

YES
> NOT FOUND

NO

L POINT TO MIDDLE OF TABLE I

‘ ‘—— (ENTRY)

LINCREMENT COUNTER = INCREMENT COUNTER/2 |

l ADD ONE IF IT WAS OLD I

!

L COMPARE TO ENTRY]

YES
> FOUND

NO

PRESERVE CARRY (SIGN OF COMPARISON)
INTO COMPRES FLAG

IS INCREMENT
VALUE ONE?

(NEXT) (LAST ONE)

Fig. 9-17: Binary Search Flowchart

294

(NEXT)

DATA STRUCTURES

(LAST ONE)

SUB FF

NOT FOUND

WiLL INCREMENT
GO PAST END
OF TABLE?

YES

& (TOOH!)
MOVE POINTERS
UPBY !

(ENTRY)

NO (ENTRY)
{TOOLO)
INCREMENT = 1
"ggiw:?'g,“"‘s CLOSENOW = COMPRES
(ENTRY)

Fig. 9-17: Binary Search Flowchart (cont.)

295

PROGRAMMING THE 6502

The search is somewhat complicated by the need to keep track of
several conditions. The major problem to be avoided is searching for an
object that is not there. In such a case, the entries with the immediately
higher and lower alphabetic values could be alternately tested forever.
To avoid this, a flag is maintained in the program to preserve the value
of the carry flag after an unsuccessful comparison. When the INCMNT
value, which shows by how much the pointer will next be incremented,
reaches a value of ‘‘1°’, another flag called ‘‘CLOSE”’ is set to the value
of the CMPRS flag. Thus, since all further increments will be ‘1,”’ if
the pointer goes past the point where the object should be, CMPRES
will not longer equal CLOSE, and the search will terminate. This fea-
ture also enables the NEW routine to determine where the logical and
physical pointers are located, relative to where the object will go.

Thus, if the OBJECT searched for is not in the table, and the
running pointer is incremented by one, the CLOSE flag will be set.
On the next pass of the routine, the result of the comparison will be
opposite to the previous one. The two flags will no longer match,
and the program will exit indicating ‘‘not found ."”

. OBJECT
——] “SyB"
TABASE
AAA
BAC
iNo) (NO)
O—— FiL TES
Tes O— xvz
xvz
FIRST TRY SECOND TRY
SEARCH INTERVAL = 5 SEARCH INTERVAL = 2

Fig. 9-18: A Binary Search

296

DATA STRUCTURES

The other major problem that must be dealt with is the possibili-
ty of running off one end of the table when adding or subtracting
the increment value. This is solved by performing an ‘‘add” or
‘“subtract’’ test using the logical pointer and length value to determine
the actual number of entries, rather than using physical pointers to
determine their mere physical positions.

In summary, two flags are used by the program to memorize in-
formation: CMPRES and CLOSE. The CMPRES flag is used to
preserve the fact that the carry was either ‘0 or ‘‘1’’ after the
most recent comparison. This determines if the element under test
was larger or smaller than the one to which it was compared. Whenever
the carry C is ““1,”’ the entry is smaller than the object, and CMPRES
is set to ¢‘1.”” Whenever the carry C is “‘0,”’ the entry is greater than the
object, and CMPRES will be set to ‘‘FF.”

Also note that when the carry is ‘1°’, the running pointer will point
to the entry below the OBJECT.

The second flag used by the program is CLOSE. This flag is set
equal to CMPRES when the search increment INCMNT
becomes equal to ““1.”’ It will detect the fact that the element has
not been found if CMPRES is not equal to CLOSE the next time
around.

Other variables used by the program are:

LOGPOS, which indicates the logical position in the table (ele-
ment number).

INCMNT, which represents the value by which the running
pointer will be incremented or decremented if the next comparison
fails. ’

TABLEN represents, as usual, the total length of the list.
LOGPOS and INCMNT will be compared to TABLEN in order to
ascertain that the limits of the list are not exceeded.

The program called ‘‘'SEARCH" is shown in Fig. 9-22. It resides
at memory locations, 0600 to 06E3, and deserves to be studied
with care, as it is much more complex than in the case of a linear
search.

An additional complication is due to the fact that the search
interval may at times be either even or odd. When it is even, a cor-
rection must be introduced. It cannot, for instance, point to the middle
element of a 4-element list.

When it is odd, a ‘‘trick” is used to point to the middle element:
the division by 2 is accomplished by a right shift. The bit ‘falling
out’’ into the carry after the LSR instruction will be “1” if the in-

297

PROGRAMMING THE 6502

terval was odd. It is merely added back to the pointer:

(0615) DIV LSR A DIVIDE BY TWO
ADC #0 PICK UP CARRY
STA LOGPOS NEW POINTER

The OBJECT is then matched against the entry in the middle of
the new search interval. If the comparison succeeds, the program
exits. Otherwise (“NOGOOD”), the carry is set to 0 if the OB-
JECT is less than the entry. Whenever the INCMNT becomes “‘1”,
the CLOSE flag (which had been initialized to ‘‘0”’) is then checked
to see if it was set. If it was not, it gets set. If it was set, a check is
run to determine whether we passed the location where the OB-
JECT should have been but was not found.

Element Insertion

In order to insert a new element, a binary search is conducted. If
the element is found in the table, it does not need to be inserted.
(We assume here that all elements are distinct). If the element was
not found in the table, it must be inserted. The value of the CMPRES
flag after the search indicates whether this element should be inserted
immediately before or immediately after the last element to which it
was compared. All the elements following the new location where it is
going to be placed are then moved down by one block position, and the
new element is inserted.

The insertion process is illustrated in Figure 9-19 and the corres-
ponding program appears on Figure 9-22.

The program is called ‘““NEW”’, and resides at memory locations
06E3 to 075E.

Note that indirect indexed addressing is used again for block
transfers:

(072A) LDY ENTLEN
ANOTHR DEY
LDA (POINTR), Y
STA (TEMP), Y
CPY #0

BNE ANOTHR

Observe the same at memory location 0750.

298

DATA STRUCTURES

BEFORE AFTER
TABASE ——> AAA AAA
ABC ABC
ELEMENT

TAR BAT

ZAP TAR

+ ZAP

OBJECT ——= BAC MOVE DOWN

Fig. 9-19: Insert: “BAC”

Element Deletion

Similarly, in order to delete an element, a binary search is conducted
to find the object. If the search fails, it does not need to be deleted. If
the search succeeds, the element is deleted, and all the following ele-
ments are moved up by one block position. A corresponding example is
shown in Fig. 9-20, and the program appears in Figure 9-22. The flow-
chart is shown in Fig. 9-21.

It is called “DELETE,” and resides at memory addresses
075F to 0799. '

LINKED LIST

The linked list is assumed to contain, as usual, the three alpha-
numeric characters for the label, followed by 1 to 250 bytes of data,
followed by a 2-byte pointer which contains the starting address of
the next entry, and lastly followed by a 1-byte marker. Whenever this
1-byte marker is set to ‘‘1,” it will prevent the insert-routine from
substituting a new entry in the place of the existing one.

299

PROGRAMMING THE 6502

Further, a directory contains a pointer to the first entry for each
letter of the alphabet, in order to facilitate retrieval. It is assumed
in the program that the labels are ASCII alphabetic characters.
All pointers at the end of the list are set to a NIL value which has
been chosen here to be equal to the table base, as this value should
never occur within the linked list.

The insertion and the deletion program perform the obvious pointer
manipulations. They use the flag INDEXD to indicate if a pointer
pointing to an object came from a previous entry in the list or
from the directory table. The corresponding programs are shown in
Fig. 9-27. the data structure is shown in Fig. 9-23.

An application for this data structure would be a computerized
address book, where each person is represented by a unique
3-letter code (perhaps the usual initials) and the data field contains
a simplified address, plus the telephone number (up to- 250
characters).

BEFORE AFTER
AAA AAA
M°V;“' ABC ABC
BAC — BAT
BAT ' TAR
e TAR AP
AP
v
DELETE

Fig. 9-20: Delete: “BAC"

300

DATA STRUCTURES

DELETE

'

ALREADY IN? OuTs

COUNT HOW MANY
ELEMENTS FOLLOW THE
ONE TO BE DELETED

YES

NO

RESULT = COUNTER
LOG POS

!

> POINT TO NEXT ENTRY

o POINTER = TEMP (SOURCE)

v

TRANSFER IT UP ONE BLOCK

'

POINT TO NEXT ENTRY
POINTER = POINTER (DESTINATION)

L DECREMENT LOGPOS j

NO

(DECER) YES
L SET 2 FLAGS Jq-—l

RTS

Fig. 9-21: Deletion Flowchart (Alphabetic List)

301

PROGRAMMING THE 6502

LINE 8 L0C CODE LINE

0002 0000 CLOSE = $10

0003 0000 CHPRES = $11

0004 0000 TABASE = $12

0005 0000 POINTR = $14

0006 0000 TADLEN = $14

0007 0000 LOGPOS = $17

0008 0000 INCHNT « 918

0009 0000 TENP = 819

0010 0000 ENTLEN = $1B

0011 0000 OBJECT = $1C

0012 0000 :

0013 0000 "= 4600

0014 0600 ;

0015 0600 A9 00 SEARCH LDA M0 $ZERD FLAGS

0016 0602 85 10 STA CLOSE

0017 0604 85 11 STA CHPRES

0018 0608 A5 12 LDA TABASE SINITIALIZE POINTER

0019 0608 65 14 STA POINTR

0020 0604 A5 13 LDA TABASE+1

0021 040C 85 15 §TA POINTRe1

0022 060E A5 14 LDA TABLEN $GET TABLE LENGTH

0023 0610 DO 03 BNE DIV

0024 0412 4C E0 06 NP OUT

0025 0615 4p DIV LSR A $DIVIDE IT BY 2

0026 0416 69 00 Aanc #0 $ADD BACK IN 17§ BIT

0027 0418 85 17 STA LOGPOS iSTORE AS LOGICAL POSITION
0028 0614 85 18 STA INCANT STORE AS INCREWENT VALUE
0029 041C A4 17 LDX LOGPOS NULTIPLY ENTLEN BY LOGPOS
0030 O041E Ca DEX i+ .ADDING RESULT TO POINTER
0031 041F FO OF BEQ ENTRY

0032 0621 A5 1B LOOP LDA ENTLEN

0033 0623 18 cue

0034 0624 45 14 ADC POINTR

0035 0626 85 14 STA POINTR

0035 0628 90 02 BCC LOPP

0037 0624 E6 15 INC POINTR+1

0038 062C ChA LOPP DEX

0039 062D DO F2 BNE LOOP

0040 062F AS 18 ENTRY LDA INCMNT sDIVIDE INCREMENT VALUE Br 2
0041 0431 44 LSR A

0042 0632 49 00 ADC 90

0043 0434 85 18 STA INCANT

0044 0436 A0 00 LY %0 ;COMPARE FIRST LETTERS
0045 0638 B1 1C LDA (OBJECT),Y

0046 0634 D1 14 CHP (POINTR),Y

0047 063C DO 11 BNE NOGOOD

0048 063E (8 Ny sCOMPARE 2NDI LETTERS

0049 043F B1 1T LDA (OBJECT),Y

0050 0641 D1 14 CNP (POINTR),Y

0051 0643 DO 04 BNE NOGOOD

0052 0645 C8 INY +CONPARE 3RD LETTERS

0053 0646 B1 1C LDA (OBJECT),Y

0054 0648 D1 14 CHP (POINTR),Y

0055 0644 DO 03 BNE NOGOOD

0056 064C 4C E2 06 JNP FOUND

0057 064F A0 FF NOGOOD LDY WSFF sSET COMPARE RESULT FLAG
0058 0451 90 02 BCC TESTS $1F 0BJ < POINTR : C-0
0059 0653 A0 01 Loy w1

0060 0655 84 11 TESTS STY CWPRES

0051 0657 A4 18 LDY INCANT ;1S INCR. VALUE A 17

0062 0659 88 DEY

0063 04854 DO 10 RNE NEXT

0064 045C A5 10 LDA CLOSE $CHECK CLOSE FLAG IF IT WAS
0065 045€ FO 08 BED NAKCLO $IF CLOSE FLAG NOT SET, G DO IT
0066 0460 38 SEC

0067 0661 E5 11 SBC CPRES $SEE IF GAVE PASSED WHERE 0BJ.
0068 0463 FO 07 BEQ NEXT $..SHOULD BE BUT ISNT

Fig. 9-22: Alphabetic List Programs: Binary Search, Delete, Insert

302

DATA STRUCTURES

0069 0645 4C €O 06 NP oUT
0070 0448 AS 11 NAKCLO LDA CNPRES $8ET CLOSE FLAS TO CNPRES
0071 066A 85 10 STA CLOSE

0072 066C 24 11 NEXT BIT CNPRES

0073 084E 30 38 NI SUBIT

0074 0670 AS 14 LDA TABLEN $SEE IF ADDITIION OF INCANT
0075 0672 38 SEC $+oVILL RUN PAST END OF TABLE
0076 0673 ES 17 SDC LOGPOS

0077 0675 FO &9 EQ OUT $CHECK TO SEE IF AT END OF TADLE ALREADY
0070 0477 €S 18 SOC INCANT

0079 0679 90 14 5CC TOONI

0080 067 A6 18 LDX INCANT ;15 ALL RIGHT, INC POINTER DY
0081 047D AS 1D ADDER LDA ENTLEN $+PROPER ANOUNT

0082 067F 18 cLe

0083 0630 65 14 ADC POINTR

0084 0682 65 14 STA POINTR

0085 0684 90 02 BCC AD

0086 0486 E6 13 INC POINTR#1

0087 0688 CA AD! BEX

0088 0489 DO F2 BNE ADDER

0089 048D AS 17 LDA LOBPOS $ INCRENENT LOGICAL POSITION
0090 068D 18 cLe

0091 04BE 45 18 ADC INCHNT

0092 0690 85 17 STA LOGPOS

0093 0692 4C 2F 06 JNP ENTRY

0094 0695 E6 17 TOONI INC LOGPOS ;INCR. LOGICAL POSITION

0095 0697 AS 1) LDA ENTLEN $NOVE POINTER UP ONE ‘ENTRY
0096 0499 10 cLe

0097 0694 45 14 ADC POINTR

0098 069C 85 14 STA POINTR

0099 069 90 35 BCC SETCLO

0100 06A0 E6 15 INC POINTR#1

0101 06A2 4C DS 06 JNP SETCLO

0102 06AS AS 17 SUBIT LDA LOGPOS $SEE IF INC WILL GO OFF BOTTON
0103 0847 30 SEC §ee OF TADLE

0104 06AB ES5 18 SBC INCHNT

0105 06AA FO 17 DEQ TOOLOY

0106 08AC 90 15 BCC TOOLOY

0107 06AE 85 17 STA LOBPOS $SAVE NEV LOBICAL POSITION
0108 0600 A6 10 LDX INCHNT

0109 0882 AS 14 SUDLOP LDA POINTR $SUBTRACT PROPER ANT. FRON POINTER
0110 06p4 38 SEC

0111 0605. ES 1D SBC ENTLEN

0112 0607 85 14 STA POINTR

0113 0689 B0 02 BCS SUBO

0114 06D Cé 1S DEC POINTR#1

0115 040D CA 8UBO DEX

0116 043E DO F2 BNE SUBLOP

0117 06CO AC 2F 04 JNP ENTRY

0118 06C3 A6 17 T00LOW LDX LOBPOS $SEE IF POS IS ALREADY |
0119 06C5 CA DEX

0120 06C6 FO 18 BEQ OUT

0121 0468 €6 17 DEC LOBPOS

0122 04CA AS 14 LDA POINTR $SUB 1 ENTRY FRON POINTER
0123 0sCC 38 SEC

0124 04CD ES 1B SDC ENTLEN

0125 04CF 85 14 S$TA POINTR

0126 0601 B0 02 B8 SETCLO

0127 0803 €6 15 DEC POINTR#1

0120 0605 A9 01 SETCLO LDA 01

0129 04D7 85 18 STA INCHNT

0130 0609 AS 11 LDA CPRES

0131 06DB 85 10 STA CLOSE

0132 06DD 4C 2F 04 JUP ENTRY

0133 04E0 A2 FF OUT LDX WSFF +2 BET IF FOUND

0134 06E2 40 FOUND RTS

0135 06E3 ;

0136 043 :

0137 06E3 H

0138 O0SE3 20 00 06 NEU JSR SEARCH $SEE IF OBJECT IS ALREADY THERE

Fig. 9-22: Alphabetic List Programs: Binary Search, Delete, Insert (cont.)

303

PROGRAMMING THE 6502

0139 06E6 FO 76 BEO OUTE

0140 08EB AS 14 LDA TABLEN JCHECK FOR 0 TABLE

0141 06EA FO 62 BEQ INSERT

0142 06EC 24 11 BIT CHPRES STEST LAST COMPARE RESULT
0143 06EE 10 05 BPL LOSIDE

0144 06F0 C6 17 DEC LOGPOS sSET LOGICAL POSITION SO
0145 06F2 4C 00 07 JNP SETUP 3..SUB UORKS LATER

0146 06F5 A5 1B LOSIDE LDA ENTLEN JSET POINTER ABOVE UHERE
0147 04F7 18 cLe +..0BJECT WILL 6O

0148 06F8 45 14 ADC POINTR

0149 04FA 85 14 STA POINTR

0150 06FC 90 02 BCC SETUP

0151 O04FE E6 15 INC POINTR+1

0152 0700 A5 16 SETUP LDA TABLEN SSEE HOW MANY ENTRIES THERE
0153 0702 38 SEC i+.ARE AFTER WHERE O0BJ. WILL GO
0154 0703 €5 17 SBC LOGPOS

0155 0705 FO 47 BEQ INSERT

0156 0707 AA Tax

0157 0708 A8 Tay

0158 0709 68 DEY iSEE IF ALREABY FOINTING T0
0159 0720A FO OF BED SETENP 1ooLAST ENTRY

0160 070C AS 1B UPLOOP LDA ENTLEN JMOVE POINTER TO LAST ENTRY
01461 0706 18 cLe

0162 070F 45 14 ADC POINTR

0163 0711 85 14 STA POINTR

0164 0713 90 02 BCC SETO

0163 0715 E6 15 INC POINTR+!

0146 07217 88 SET0 DEY

0167 0718 DO F2 BNE UPLOOP

0168 0714 A5 14 SETENP LDA POINTR JADD ENTLEN TO POINTER
0169 071C 18 CLC 3..STORE AT TENP

0170 021D 45 1B ADC ENTLEN

0171 0721F 85 19 STA TENP

0122 0721 90 01 BCC SET!

0173 07223 ¢8 INY :T UAS ALREADT 0

0174 0724 98 SETT TvA

0175 0725 18 cLe

0176 0726 65 15 ADC POINTR+1

0177 0728 85 1A STA TENP+I

0178 0724 A4 1B NOVER LDY ENTLEWN ISET Y FOR SHIFT

0179 072C 88 ANOTHR DEY

0180 072D B! 14 LDA (POINTR),Y ;MOVE A BYTE

0181 072F 91 19 STA (TENP),Y

0182 0731 CO 00 CPY 80

0183 0733 DO F? BNE ANOTHR

0184 0735 AS 14 LDA POINTR JDECR. POINTER AND TENP
0185 0737 38 SEC 3.4BY ENTLEN

0186 0738 ES 1B SBC ENTLEN

0187 0734 85 14 STA POINTR

0188 073C BO 02 BCS M1

0189 073 Cé 15 DEC POINTR+)

0190 0740 CA L1I DEX

0191 0741 DO D? BNE SETEMP

0192 0743 AS 1B LBA ENTLEN sHOVE POINTER BACK TO
0193 0745 18 cLe SUHERE 0BJ. WILL 60
0194 0746 65 14 ADC POINTR

0195 0748 85 14 STA POINTR

0196 0744 90 02 BCC INSERT

0197 074C E6 15 INC POINTR+1

0198 074E A0 00 INSERT LDY W0 JNOVE OBJECT INTO TABLE
0199 0750 A6 1B LDX ENTLEN

0200 0752 B! IC INNER LDA (OBJECT),Y

0201 0754 91 14 STA (POINTR),Y

0202 0756 C8 INY

0203 0757 CA DEX

0204 0758 DO F8 BNE INNER

0205 0754 E6 16 INC TABLEN SINCREMENT TADLE LENGTH
0206 075C A2 FF LDX WSFF

Fig. 9-22: Alphabetic List Programs: Binary Search, Delete, insert (cont.)

304

075E 60
073F

075F

07%F

073F 20
0762 Do
0764 A3
0766 38
0767 €S
0769 FO
0748 83
076D AS
076F 18
0770 43
0772 8%
07724 A9
0776 45
0778 85
077 Aé
077C A0
0727e N
0780 91
0762 c8
0783 CA
0784 DO
0786 AS
0788 18
0789 65
0760 83
0760 90
076F €6
0791 Cé
0793 B0
0793 Cé
0797 A9
0799 40
0794

00 06

ERRORS = 0000 <0000>

SYNBOL TABLE
SYNDOL VALIE
AN 0s88
BYTE 077¢
DECER 0795
ENTRY 062F
INSERT 074€
LOSIDE 04FS
NEV 04E3
ot 05E0
SEARCH 0400
SETENP 0714
SUDLOP 06B2
TESTS 0658

END OF ASSEMDLY

ABDER
CLOSE
DELETE
FOUND
LOGPOS

NEXT
OUTE
SETO
SETUP
TABASE
TOOHI

OUTE

ELETE

BIGLOP

e

b2
DECER
outrs

0670
0010
075F
04E2
0012
0740
066C
075E
0217
0700
0012
0695

Li£]

JSR SEARCM
BNE 0UTS
LDA TABLEN
SEC

83C LOBPOS
BEQ BDECER
§TA LOBPOS
LDA ENTLEN
o

ADC POINTR
8TA TENP
LDA 80

ADC POINTR
STA TENP#!
LDX ENTLEN
Ly 20

LDA (TENP)

]

oY

STA (POINTR),Y

wy

BEX

BNE DYTE
LDA ENTLEN
e

ADC POINTR
STA POINTR
3cC B2

INC POINTR
DEC LOGPOS
DNE DI6LOP
DEC TABLEN
LDA 80

RTS

END

ANOTHR
CMPRES
v
INCHNT
Loop
MAKCLO
N0600D
ouTs
SET1
SuUBO
TABLEN
TooLou

+1

072¢
0011
0615
0018
0621
0668
044F
0799
0724
068D
0014
06C3

DATA STRUCTURES

32 SET IF NOT DINE

36ET ADDR OF OBJECT IN TABLE
3SEE IF 1T 18 THERE

$SEE HOU NANY ENTRIES ARE
3ooLEFT AFTER 0DJ. IN TADLE

+STORE RESULT AS A COUNTER
FSET TEMP 8 ENTRY ABOVE 1 ENTRY ADOVE O3J.

3SET COUNTERS
SHOVE A DYTE
;18 BLOCK MIVED YET?

32 SET IF UAS DONE

BIGLOP 074D

b2 0791
ENTLEN 001D
INNER 0752
Lorp 0s2C
HOVER 0724

OBJECT 0d1C
POINTR 0014
SETCLO 0405
SUBIT 06A5
TENP 0o1?
UPLOOP 070C

Fig. 9-22: Aiphabetic List Programs: Binary Search, Delete, Insert (cont.)

305

PROGRAMMING THE 6502

Let us examine the structure in more detail in Fig. 9-23.
The entry format is:

C C C D D g D P P (0]
N, m— —— e et
unique label data (1 to 250 bytes) pointer to
(ASCII) next occupied

As usual the conventions are:

ENTLEN: total element length (in bytes)
TABASE: address of base of list
TABLEN: number of entries (1 to 256)

Here, REFBASE points to the base address of the directory, or
“reference table."’

Each two-byte address within this directory points to the first
occurrence of the letter to which it corresponds in the list. Thus
each group of entries with an identical first letter in their labels ac-
tually form a separate list within the whole structure. This feature
facilitates searching and is analogous to an address book. Note
that no data are moved during an insert or a delete. Only pointers
are changed, as in every well-behaved linked list structure.

DIRECTORY

AT POINTER
A
POINTER | A

R NIl

"R POINTER

NiL

Fig. 9-23: Linked List Structure

306

DATA STRUCTURES

If no entry starting with a specific letter is found, or if there is no
entry alphabetically following an existing one, their pointers will
point to the beginning of the table (= ‘‘NIL”). At the bottom of the
table, by convention, a value is stored such that the absolute value
of the difference between it and “Z” is greater than the difference
between “A’”’ and ‘“Z.” This represents an End Of Table (EOT)
marker. The EOT value is assumed here to occupy the same
amount of memory as a normal entry but could be just one byte if
desired.

The letters are assumed here to be alphabetic letters in ASCII
code. Changing this would require changing the constant at the
PRETAB routine.

The End Of Table marker is set to the value of the beginning of
the table (‘“NIL”).

By convention, the ‘“NIL pointers,”’ found either at the end of a
string or within a directory location which does not point to a string,
are set to the value of the table base to provide a unique identifica-
tion. Another convention could be used. In particular, a different
marker for EOT would result in some space savings, as no NIL
entries need be kept for nonexisting entries.

Insertion and deletion are performed in the usual way (see Part I
of this chapter) by merely modifying the required pointers. The
INDEXD flag is used to indicate if the pointer to the object is in
the reference table or another string element.

Searching

The SEARCH program resides at memory locations 0600 to
0650. In addition, it uses subroutine PRETAB at address 06F8.
The search principle is straightforward:

1— Get the directory entry corresponding to the letter of the
alphabet in the first position of the OBJECT's label.

2— Get the pointer out of the directory. Access the element. If NIL,
the entry does not exist.

3— If not NIL, match the element against the OBJECT. If a
match is found, the search has succeeded. If not, get the pointer to
the next entry down the list.

4— Go back to 2.

An example is shown in Fig. 9-24.

307

PROGRAMMING THE 6502

@——’ A-POINTER @ > AAA @ AAZ @ ABC
B-POINTER _r I NiL
(FOUND)
(4 STEPS REQUIRED)
OBJECT ———n| ABC
Fig. 9-24: Linked List: A Search
Element Insertion

The insertion is essentially a search followed by an insertion
once a ‘*“NIL’ has been found. A block of storage for the new entry
is allocated past the EOT marker by looking for an occupancy
marker set at ‘‘available’”’. The program is called “NEW" and
resides at addresses 0651 to 06BD. An example is shown in Fig.

9-25.

BEFORE

A-POINTER

CAB

8-POINTER

i)

| 7]

N

C-POINTER

cBs

NiL

AFTER

OBJECT

A-POINTER

czz

B-POINTER

NiL

C-POINTER

il

L.

cBs

'Fig. 9-25: Linked List: Example of Insertion

308

DATA STRUCTURES

Element Deletion

The element is deleted by setting its occupancy marker to ‘‘available’’
and adjusting the pointer text from either the directory or the
previous element. The program is called ‘“DELETE’’ and resides
at addresses 06BE to 06F7. An example of a deletion is shown in Fig.
9-26.

(BEFORE)

oNn®»
I
i

DAF POINTER
I-b- “DAF" _]—b- “poc*
DOC POINTER NIL

OELETE

(AFTER)

oN®>»

DOC POINTER —> "DOC™

NIL

NOTE DAF IS NOT ERASED. BUT “INVISIBLE"

Fig. 9-26: Example of Deletion (Linked List)

309

PROGRAMMING THE 6502

LINE 0 LOC

0002
0003
0004
0005
0006
0007
0008
0009
o010
o001
0012
0013
0014
0013
006
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0043
0064
0065
0066
0067
0068
0069

310

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0600
0400
0802
0604
0607
0609
0400
060C
040E
0610
0812
0614
0816
0618
0614
061C
061E
0420
0821
0623
0425
0627
0629
0624
082¢
082E
0430
0432
0634
0636
0638
0634
063¢
063E
063F
0440
0642
0644
0645
0647
0649
0448
044E
0450
0451
0451
0651
0451
0454
0456
0458
0459
0458
0450
045F
0461
0463

[{1]3

14
13

34
15
13
30
12

15
13
27
09

15
13
1€
1€

1C
13
1B
1F
13

13
1"

13
00

10
FF

00
1D

o1
17
00
1€
18
1F

06

06

06

InDEXD
ot
POINTR
0DJECT
TENP

REFBAS

LINE

oL

TABASE
ENTLEN

‘
SEARCH

ENTRY

NOTFND
FOUND

we ve v

LDA
STA
JSR
LDA
STA
Iny
LbA
STA
Lpy
Lo
cp
BEQ
LDA
1,14
acc
BNE
Iny
LbA
4,14
BCC
BNE
Iy
LBA
cap
BCC
BEQ
LbA
sTA
LDA
§TA
Loy
LDA
TAX
Ny
LDA
STA
XA
STA
LDA
sTA
JNP
LDA
RTS

JSR
BEQ
LbA
CLe
ADC
STA
LDA
ADC
ST
Loy

$10
(21}
813
$15
$17
(11
1
1)
SIF

$400

n
INBEXD
PRETAD
(INDLOC) , ¥
POINTR

(INDLOC) , ¥
POINTRe1
"
(POINTR) ¥
"8
NOTFND
(OBJECT), ¥
(POINTR) ¥
NOTFND
05000

(0BJECT),Y
(POINTR), Y
NOTFND
NOGOOD

(OBJECT),Y
(POINTR),Y
NOTFND
FOUND
POINTR+1
OLD+1
POINTR
oLp
ENTLEN
(POINTR),Y

(POINTR), Y
POINTR#1

POINTR
20
INDEXD
ENTRY
WSFF

SEARCH
OUTE
TABASE

TABASE+1
TENP+Y
ENTLEN

SINITIALIZE FLABS

$6ET REF. POINTER FOR START
sPUT IT IN POINTR

sSEE IF ENTRY IS EOT VALUE

sCOMPARE FIRSI LETTERS

sCOMPARE SECOND LETTERS

sCOMPARE THIRD LETTERS

SSAVE POINTR FOR POSSIBLE REF.

JGET POINTER FRON ENTRY AND
3++LOAD IT INTO POINTR

$RESET FLAS

32 SET IF Foumd

38EE IF 0BJ. IS ALREADY THERE ,

sLOOK FOR UNOCCUPIED ENTRY
§+4BLOCK
;JUNP PAST EOT VALUE

$SET Y TO POINT T0 OCCUPANCY

Fig. 9-27: Linked List Program

0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0083
0086
0087
0088
008y
0090
0091
0092
0093
0094
0095
0094
0097
0098
0099
0100
0101
o102
0103
0104
0103
0106
0107
0108
0109
0110
o111
0112
0113
o114
0113
o114
o117
o118
o1y
0120
0121
0122
0123
0124
0123
0126
0127
0126
0129
0130
[J}]]
0132
033
0134
0133
o136
[k 24
o138

0485
0886
0667
0649
0666
064D
086F
0420
0622
0674
0676
0678
0674
067C
067E
0680
0663
0684
0685
0664
0468
0684
048C
066
0690
0692
0694
0495
0697
0699
0694
069C
049€
0640
0842
0643
068
0687
06A8
0647
06AC
044F
0602
0684
0606
0697
069
0680
060D
080
040E
06DE
04dE
04C1
04C3
04CS
04c?
04c9
04CA
oscc
06CE
04CF
06
063
0605
060?
060A
0n
0u0F

4C 67 06

20 00 06

wy
Y
Lo0P LDA
cHp
BNE
LDA
o
abe
BCC
INC
NORE ADC
sTh
A
ac
8T
Jnp
INSERT DEY
DEY
LOPE BEY
Lo
ST
cPY
BNE
Loy
LDA
ST
ny
LDA
ST
wy
(oA
ST
LDA
E
DEY

J
SETINX JSR

JSR
JHp
PREINX LDA
cLe

"n
(TENP), Y
INSERT
TENP

ENTLEN
HORE
TENP+)
3
TENP
L[]
TENP+I
TENP+1
LOOP

(OBJECT), ¥
(TENP), Y
0

LOPE
ENTLEN
POINTR
(TENP), ¥

POINTR+1
(TENP), ¥

L]}
(TENP), Y
INDEXD
SETINX

TENP+1
woLD),Y

TENP
LD,y
DONE
PRETAB
TENP
(INDLOC), ¥

TENP+1
(INDLOC), Y
WSFF

SEARCH
ours
ENTLEN
(POINTR), Y
TENP

(POINTR) ¥
TENP+

0
(POINTR), ¥
INDEXD
PREINX
PRETAD
NOVEIT

oLd

DATA -STRUCTURES

7+« MARKER OF AN ENTRY
STEST FOR OCCUPANCY NARKER

$IF 1S USED, NOVE TEMP TO NEXT
3+.ENTRY BLOCK

$SET Y BACK T0 POINTINS TO
3..T0P OF DATA
sNOVE OBJECT INTO SPACE

sPUT THE VALUE OF POINTR, THE
JENTRY AFTER OBJECT, INTO
sPOINTER AREA OF OBJECT

$SET OCCUPANCY MARKER

+TEST TQ SEE IF REF. TABLE
7+ NEEDS READJUSTING

3N0, CHANBE PREVIOUS ENTRY‘S
7++POINTER

FGET ADDRESS OF WNATS TO DE CNANGED
FLOAD ADDR. OF 0BJ. THERE

71 CLEAR IF DONE

$6ET ADDR OF 0BJ.

SSTORE POINTER AT END
§+0F OBJECT

$CLEAR OCCUPANCY NARKER
$8EE IF REF. TADLE NEEDS
3+ «READJUSTING

3SET FOR CHANSING PREVIOUS
7 «ENTRY

Fig. 9-27: Linked List Program (cont.)

31

PROGRAMMING THE 6502

0E0 45 IF
06E2 05 1
O04E4 A9 00
04E6 45 1C
04E8 85 12
068N A5 17
06EC A0 00
0EE 1 11
WFo Co

04F1 A3 18
WF3 1
06FS A9 00
“F? 0

04F8 A0 00
0FA D1 1S
30

o B a

. 0201 43 17

0703 85 11
0705 A9 00
0707 65 1A
07209 85 12
07208 60

ERPORS = 0000 <0009

SYMBOL
SYHsOL

DELETE
FOUND
LooP
NEW
oLp
PREINX
SETINX
END OF

312

TABLE
VALUE
06BE DONE
0450 INDEXD
0467 LOPE
0651 NOS00D
0010 OUTE

08DD PRETAB
O06AF TABASE
ASSENBLY

ours
i
H
1

ADC ENTLEN
STA InBLOC

LDA 80
ADC OLD+1

8TA INDLOC1
HOVELT LDA TENP

LoY 00

STA (INDLOC),Y
wy

LDA TENP+1

STA (1wdLOC),Y

LBA 00
RTS

PRETAD LDY 80

0608
0010
0685
0432
06BD
04F8
001D

LDA (ODJECT),¥

SEC

8IC 04
ASL A
€L

ADC REFDAS
STa IwpLOC

LbA 00

ADC FEFBASe1
STA INDLOCe?

RTS
+END

ENTLEN
INDLOC
NORE
NOTFND
ouTs
REFBAS
TENP

001F
oot
0676
084E
06F?
00ty
0017

SCHANSE UNAT BEEDS CHANGING

s2 SET IF DONE

SREMOVE ASCII LEADER FRON
3e+FIRST LETTER IN OBJECT
SHULTIPLY BY 2

JINDEX INTO REF. TADLE

ENTRY [(31)
INSERT 0603
MOVEIT 04EA
OBJECT 0015
POINTR 0013
SEARCH 0600

Fig. 9-27: Linked List Program (cont.)

DATA STRUCTURES

BINARY TREE

We will now develop typical tree management routines. Our simple
structure is shown in Fig. 9-28. It is a binary tree, and the nodes are
names of persons. Names will be internally sorted by ‘‘tags’’ which will
be the first three letters of every name. The memory representation of
this tree structure is shown in Fig. 9-29. The contents of the nodes are
shown, as well as the two links. The first link, to the left of the name, is
the ““left sibling’’ and the next link, to its right, is the *‘right sibling.”’
For example, the entry for Jones contains two links: ‘“2’’ and “‘4’’. This
indicates that its left sibling is entry number 2 (Anderson), and its right
sibling is entry number 4 (Smith). A “‘0”’ in the link field indicates no
sibling. A left sibling’s tag comes alphabetically before its parent. A
right sibling’s tag comes after.

BN
AND(E:)SON SIE\:T)H
AI.BER'I/ ::WN MURRA/Y \\‘TIMOTHY
@ ©) () /(o)
ZORK

(8)

Fig. 9-28: Binary Tree

The two main routines for tree management are the tree builder
and the tree traverser. The element to be inserted will be placed in
a buffer. The tree builder will insert the content of the buffer into
the tree at the appropriate node. The tree traverser is said to
traverse the tree recursively, and prints the contents of each of its.
nodes in alphanumeric order. The flowchart for the tree builder is
shown in Fig. 9-30, and the flowchart for the tree traverser is shown in
Fig. 9-31.

313

PROGRAMMING THE 6502

LEFT RIGHT

1| JONES 4

-

2 | ANDERSON 3

3 | BROWN 0

4| SMITH 6 ja—
5 | MURRAY 0

6 | ZORK 0 jt——
>

7 | ALBERT 0

8 | TIMOTHY 0

Fig. 9-29: Representation in Memory

314

\

ORDER
OF INSERTION

DATA STRUCTURES

WORK POINTER =
START POINTER

FREEPTR
= STARI;POIN‘I'ER

WORKPIR =
- RIGHTPTR OF CONTENTS 10
CURRENT NODE TOP OF TREE

FREEPTR = FREEPTR
+ ENTLEN + 4

Fig. 9-30: The Tree Bullder Flowchart

315

PROGRAMMING THE 6502

Y

ADD BUFFER
CONTENTS TO
TOP OF TREE
[POINTED TO
BY FREEPTR]

!

LEFT POINTER
OF CURRENT NODE
= FREEPTR

!

SET POINTERS OF
NEW NODE = 0

!

FREEPTR = FREEPTR
+ ENTLEN + 4

RETURN

LEFT
POINTER OF
CURRENT
NODE = 0
?

i

WORKPTR =
RIGHTPTR OF
CURRENT NODE

Fig. 9-30: The Tree Builder Flowchart (cont.)

316

DATA STRUCTURES

WORKPTR = STARTPTR

START
SEARCH

'WORKPTR

@

[]
[womom
[= o o]

)

Fig. 9-31: Tree Traverser Flowchart

317

PROGRAMMING THE 6502

Since the routine for the traversal is recursive, it does not lend itself well
to flowchart representation. Another description of the routine in a high-
level format is therefore shown in Fig. 9-32. An actual node of the tree
is shown in Fig. 9-33. It contains data of length ENTLEN, then two 16-
bit pointers (the right pointer and the left pointer). In order to avoid a
possible confusion, note that the representation of Fig. 9-29 has been
simplified and that the right pointer appears to the left of the left
pointer in the memory. The memory allocation used by this program is
shown in Fig. 9-34, and the actual program appears in Fig. 9-37.

The INSERT routine resides at addresses 0200 to 0282. The tag
of the object to be inserted is compared to that of the entry. If greater,
one moves to the right. If smaller, to the left, down by one position.
The process is then repeated until either an empty link is found or a
suitable ‘‘bracket’’ is found for the new node (i.e., one node is greater
and the next one smaller, or vice versa). The new node is then inserted
by merely setting the appropriate links.

PROGRAM TREETRAVERSER;
BEGIN

CALL SEARCH (STARTPOINTER);
END.

ROUTINE SEARCH (WORKPOINTER);

BEGIN
IF WORKPOINTER = 0 THEN RETURN;
SEARCH [LEFTPTR (WORKPOINTER)];
PRINT TREE (WORKPOINTER);
SEARCH [RIGHTPTR (WORKPTR)];
RETURN;

END.

Fig. 9-32: Tree Traversal Algorithm

318

DATA STRUCTURES

DATA: ‘ENTLEN’ BYTES

RIGHT
L

PTR LEFT

| H L

PTR
i H

(n)

(n + ENTLEN + 4)

Fig. 9-33: Data Units, or “Nodes” of Tree

PAGE 0

s10 FREPTR (LO)

FREPTR (HI)

WRKPTR (LO)

WRKPTR (HI)

ENTLEN

STRTPT (LO)

\V4

HIGH MEMORY

PROGRAM

STRTPT (HI)
$17

BUFFER

$37 o - - - - - - -

\V4

TREE

Fig. 9-34: Memory Maps

$200

$600

TOP OF TREE

319

PROGRAMMING THE 6502

The TRAVERSE routine resides at addresses 0285 to 02D6. The
utility routines OUT, ADD and CLRPTR reside at addresses 0207
to 02FE (see Fig. 9-37).

An example of a tree insertion is shown in Fig. 9-35, and an ex-
ample of a tree traversal in Fig. 9-36.

e lﬁﬁ\

-
=] [

TIMOTHY

2 INSERT

MURRAY

Fig. 9-35: Inserting an Element in the Tree

320

DATA STRUCTURES

JONES

ANDERSON SMITH
ALBERT i BROWN MURRAY ZORK

N =

!) TIMOTHY
ALBERT ANDERSON BROWN JONES MURRAY 1
SMITH ZORK
TIMOTHY

Fig. 9-36: Listing the Tree

Note on Trees

Binary trees may be constructed and traversed in many ways.
For example, another representation for our tree could be:

S N
ANDERSON MURRAY

/

SMITH

ALBERT

i TIMOTHY |
L

ZORK

BROWN l

Fig. 9-38 : Tree in Preorder

It would then have to be traversed in ‘‘preorder’’:

1— list the root
2— traverse left subtree
3— traverse right subtree

Many other techniques and conventions exist.

321

PROGRAMMING THE 6502

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0014
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0033
0034
0037
0038
0039
0040
0041
0042
0043
0044
0045
0044
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0056
0039
0060
0061
0062
0043
0064
0065
0066
0067
0068
0069
0070
0071

322

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0010
0012
0012
0014
0015
0017
0028
0028
0200
0200
0200
0200
0200
0200
0202
0204
0206
0208
0204
020C
020
0210
0212
0214
0217
0214
0218
021D
0220
0222
0224
0224
0224
0228
0228
0229
0228
022D
022F
0231
0233
0234
0236
0238
0234
023C
023p
023F
0241
0244
0247
0248
0244
024C
024D
024E
0250
0252
0254

00

06

15
12
16
13
10

(14
"
16

b7 02
E4 02

00
17 00

33

02
05

04
Fo

12
15

12
10
"
12

10

07 02
E4 02

14
12

12
13
12
13 02

s TREE NANAGENENT PROGRAN.

72 ROUTINESs ONE, WHEN CALLED, PLACES
sTHE CONTENTS OF. THE BUFFER INTO THE
$TREE; AND THE SECOND TRAVERSES

$THE TREE RECURSIVELY, PRINTING ITS
¢NODE CONTENTS IN ALPHANUNERIC ORDER.
$NOTE: “ENTLEN NUST BE INITIALIZED

TAND “FREPTR’ MUST BE SET EQUAL TO

3 ‘STRTPTR” BEFORE EITHER ROUTINE IS USED,

’
FREPTR

WRKPTR
ENTLEN
STRTPT
BUFFER

* =810
2842

JFREE SPACE POINTER: POINTS TO

SNEXT FREE LOCATION IN MEMORY.

2242
sz8d]
JWORD $400
24420

* = $200

JUORKING POINTER, POINTS TO CURRENT NODE.

STREE ENTRY LENGTH, IN BYTES.

+1/0 BUFFER.

’
sROUTINE TO BUILD TREE: ADDS ONE DATA UNIT,
sOR NODE, TO TREE. MUST BE CALLED

SVITH DATA UNIT TO BE ADDED IN “BUFFER’.

‘
INSERT

INLOOP
CHPLP

NXT

GRTNEQ

NXRNOD

LDA STRTPT
STA URKPTR
LDA STRTPT#1
STA URKPTR+1
LDA FREPTR
CHP STRTPT
BNE INLOOP
LDA FREPTR+1
CHP STRTPT+1
BNE INLOOP
JSR ADD

JSR CLRPTR
RTS

LY 80

LDA BUFFER,Y
CHP (URKPTR),Y
BCC LESSTN

JUORKPOINTER ¢= FREEPOINTER.

JIF FREEPOINTER <>
sSTARTING LOCATION POINTER,
+60TO INSERTION LOOP.

+LOAD BUFFER INTO CURRENT POSITION.
sSET POINTERS OF CURRENT NODE TO 0.
+DONE ADDING 1ST NODE.

SCOMPARE BUFFER TA6 TO TAG OF CURRENT
SLOCATION, ..

$BUFR TA6 LOVER: ADD BUFFER TO

SLEFT SIDE OF TREE.

BE@ NXT
BCS GRTNEQ

iTAGS EQUAL, TRY NEXT CHR. IN TAGS.
iBUFR TAG GREATER, ADD BUFR T0

sRIGHT SIDE OF TREE.

INY

CHP 4

BNE CHPLP

LDY ENTLEN

LDA (WRKPTR),Y
BNE NXRNOD

INY

LDA (WURKPTR),Y
BNE NXRNGD

LDA FREPTR+1
STA (WURKPTR),Y
DEY

LDA FREPTR

STA (NRKPTR),Y
JSR ADD

JSR CLRPTR

RTS

LDY ENTLEN

LDA (URKPTR),Y;
TAY

my

LDA (URKPTR),Y
STA URKPTR+1
STX URKPTR

JNP INLOOP

+3 CHRS. COMPARED'

N0, CHECK NEXT CHR.

+DOES

SRIGHT POINTER OF CURRENT NODE = 0 *
$1F NOT, MOVE DOWN/RIGHT IN TREE.

$SET RIGHT POINTEK OF CURRENT
iNODE = FREEPOINTER,

sADD BUFFER TO TREE.

sCLEAR POINTERS OF NEUW NODE.
+DONE, NEU RIGHT NODE ADDED.
+SET WORKING POINTER -

RIGHT POINTER OF CURRENT NODE.

STRY WNEVU CURRENT NODE.

Fig. 9-37: Tree Search Programs

0072
0073
0074

0026
0077
0078

0080
0081
0082
0083
0084
0085
0086
0087
0088
ooe?
0090
0091
0092
0093
0094
0093
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
o108
0109
o110
o
0112
0113
o114
0115
0116
o117
o118
o1y
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
»0140

0257
0239
0234
0230
0230
025F
0240
0242
0244
0246
0248
0269
0263
0260
0270
0273
0274
0276
0277
0278
0274
0278
027C
027¢
0280
0282
0283
0285
0285
0285
0285
0285
0285
0287
0289
0288
026D
026F
0291
0293
02935
0297
0294
0298
029C
029D
029F
0240
0241
0243
0244
0243
0247
0249
02AB
02AE
024F
0281
0282
0284
0287
02B9
02BB
02BC
02BD
02BF
oact
02C3
02C6

14
12
13

10
12
7 02
€4 02

19 02

Cé 02

8D 02

€7 02

DATA STRUCTURES

LESSTN LDY ENTLEN sBOES LEFT POINTER OF
my SCURRENT NODE = ¢ ?
mwy
LDA (URKPTR),Y
BNE NXLNOD 3IF SO, MOVE DOWN/LEFT IN TREE.
my
LDA (URKPTR),Y
BNE NXLNODD
LBA FREPTR+1 3SET LEFT POINTER OF CURRENT NODE TO
STA (URKPTR),Y ;POINT TO NEU NODE.

DEY

LDA FREPTR

STA (URKPTR),Y

JSR ADD sADD NEU NODE CONTENTS.

JSR CLRPTR sCLEAR POINTERS OF NEV NODE.

RTS sDONE, NEU LEFT NODE ADDE?.
NXLNBD LDY ENTLEN $SET UORKING POINTER =

my SLEFT POINTER OF CURRENT MNODE.

my

LDA (URKPTR),Y

TAX

wy

LDA (URKPTR),Y

STA URKPTR+1

STX URKPTR

JHP 1MLO0OP sTRY NEU CURRENT NODE.
.’
STREE TRAVERSER 3 LISTS NODES OF TREE
S 1N ALPHANUMERICAL ORDER.
SOUTPUT ROUTINE TO XFER BUFFER TO OUTPUT
SDEVICE 1S NEEDED.

’

TRVRSE LDA STRTPT SUORKING POINTER (= START POINTER,
STA URKPTR
LDA STRTPT+1
STA URKPTR+1

SEARCH LDA URKPTR+1

LOX URKPTR +IF UORKING POINTER <> O,
BNE 0K sCONTINUE;
LDY URKPTR+1
BRE 0K
JHP RETN JELSE, RETURN.

ox PHA sPUSH WORKING POINTER
XA JONTO STACK.
PHA
LDY ENTLEN $SET UORKING POINTER =
}I; SLEFT POINTER OF CURRENT NODE.
L)
LDA (URKPTR),Y
TAX
Iy

LDA (URKPTR),¥
STA URKPTR+1

STX URKPTR

JSR SEARCH sSEARCH NEV NODE, RECURSIVELY.
PLA sPOP OLD CURRENT NODE INTO VORKING POINTER.
STA URKPTR

PLA

STA WRKPTR+1

JSR 0UT ;OUTPUT CURRENT NODE CONTENTS.
LDY ENTLEN $SET UORKING POINTER =

LDA (URKPTR),Y ;CURRENT NOBE‘S RIGHT POINTER.
TAX

Ny

LDA (URKPTR),Y
STA WRKPTR+1

STX URKPTR
JSR SEARCN $SEARCH NEW NODE.
RETN RTS sDONE, RETURN.

Fig. 9-37: Tree Search Programs (cont.)

323

PROGRAMMING THE 6502

o141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0141
0162
0163
0144
0165
0166
0167
0148
0149
0170
0171
0172
0173
0174
0175
0126
0177
0178
0179
0180
0181
0182
0183
0184
0165

02¢7
02¢7
02¢7
02¢7
029
0203
02¢E
o2cF
0201
0203
0204
0205
0204
0207
0207
0207
0207
0207
0209
020¢
02DE
020F
02€1
02€3
02E4
02€4
02€4
02€4
0264
02E4
02€6
02€8
02EA
02€C
02ED
02EE
02F0
02F2
02F3
02FS
02F7
02F9
02FB
02FD
02FE

00

00

ERRORS = 0000 <0000>
END OF ASSEMBLY

324

i
sDUFFER OUTPUT ROUTINE.

¥

out LDY ®0

XFR LDA (URKPTR),Y ;GET CHR. FROM CURRENT NODE.
STA BUFFER,Y sPUT IN BUFFER.

mwy SREPEAT UNTIL...

CPY ENTLEN SALL CHARACTERS XFERRED.
BNE XFR

NOP s INSERT CALL TO SWBROUTINE
nOP SUNICH OUTPUTS BUFFER NERE.
NOP

RTS sDONE.

H
SROUTINE WHICH PLACES BUFFER
sCONTENTS IN NEU NODE.

’

ADD LDY 80

NV LDA BUFFER,Y $GET CHR. FRON BUFFER.
STA (FREPTR),Y (STORE IN NEV NODE.

INY SREPEAT UNTIL...
CPY ENTLEN SALL CHRS XFERRED.
BNE MOV

RTS DONE.

’

SROUTINE TO CLEAR POINTERS OF NEW NOJE,
SAND UPDATE FREE SPACE POINTER.

i

CLRPTR LDY ENTLEN $SET UP INDEX TO POINT
770 TOP OF POINTER LOCATIONS.

LDA 10
XM sLOOP 4X TO CLEAR POINTERS
CLRLP STA (FREPTR),Y ;CLEAR POINTER LOCATION.
INY ;POINT TO NEXT POINTER LOCATION.
DEX
BNE CLRLP ;LOOP IF NOT DONE.
LDA ENTLEN ;8ET ENTRY LENGTH,
cLe 7AND ADD 4 FOR POINTER SPACE.
ADC 44
ADC FREPTR ;ABD TO FREE SPACE POINTER T0
BCC CC ;UPDATE IT.

INC FREPTR+1 STAKE CARE OF OVERFLOUS.

cc STA FREPTR sRESTORE UPDATED FREE SPACE PTR.
RTS sDONE. ’
<END

Fig. 9-37: Tree Search Programs (cont.)

DATA STRUCTURES

A HASHING ALGORITHM
A common problem when creating data structures is how to place

identifiers within a limited amount of memory space in a sys-
tematic way so that they can be retrieved easily. Unfortunately,
unless identifiers are distinct sequential numbers (without gaps),
they do not lend themselves to placement in the memory with-
out gaps. In particular, if names were to be placed in the memory so
that they could be most easily retrieved (i.e., if they were placed
alphabetically), this would require a huge amount of memory;
a single memory block would have to be reserved for every possible
name. This is clearly not acceptable. To solve this problem, a hashing
algorithm can be used to allocate a unique (or almost unique) number
to every name which has to be entered into memory. The mathematical
function used to perform the hashing should be simple so that the algo-
rithm can be fast, yet sophisticated enough to randomize the distri-
bution of the possible names over the available memory space. The re-
sulting number can then be used as an index to the actual location, and
fast retrieval will be possible. It is for this reason that hashing is com-
monly used for directives of alphabetic names.

Since no algorithm can guarantee that two names will not hash
into the same memory location (a ‘‘collision’’) a technique must be
devised to resolve the problem of collisions. A good hashing algor-
ithm will spread names evenly over the available memory space,
and will allow efficient retrieval of their values once they have been
stored in a table. The hashing algorithm used here is a very simple
one, where we perform the exclusive OR of all the bytes of the key.
A rotation is performed after every addition to improve the ran-
domization.

The_technique used to_resolve collisions is a simple sequential
one. It is technically called a ‘‘sequential open addressing tech-

nique; "’ the next sequentially available block in the table is
allocated to the entry. This can be compared to a pocket address
book. Let us assume that a new entry must be entered for SMITH.
However, the ‘S’ page is full in our small address book. We will
use the next sequential page (““T"’ here). Note that there will not
necessarily be another collision with a new entry starting with a *“T”’;
the entry for ‘S’ may be removed (‘‘whited out,”’ in our comparison)
before a *“T’’ ever needs to be entered.

Also note that there could be a chain of collisions. If the chain is
long, and the table is not full, the hashing algorithm is a bad de-
sign.

325

PROGRAMMING THE 6502

Since it is convenient to use a power of two for the data format,
the length of the data is eight characters; six are allocated to the
key, and two to the data. This is a typical situation when creating,
for example, the symbol table for an assembler. Up to six hexa-
decimal symbols are allocated to the symbol, and two are allocated
to the address it represents (2 bytes).

When retrieving elements from the hashing table, the time re-
quired by the search does not depend on the table size, but on the
degree to which the table has been filled. Typically, keeping the
table less than 80%full will insure a high access time (one or two
tries). It is the responsibility of the calling routine to keep track of the
degree of fullness of the table and prevent overflow.

The increase of the access time versus table fullness is shown in
Fig. 9-39. The main routines used by the program are the initialize
subroutine (INIT), shown in Fig. 9-40; the store routine, shown in
Fig. 9-41; the retrieve routine, shown in Fig. 9-42; and the hash routine,
shown in Fig. 9-43. The memory allocation is shown in Fig. 9-44,
and the program is given in Fig. 9-45. The program is intended to demon-
strate all the main algorithms used in an actual hashing
mechanism. If these programs are to be imbedded in an actual imple-
mentation, it is strongly suggested that the usual housekeeping

ACCESS
TIME

TABLE FULLNESS

100>
50%

Fig. 9-39: Access Time vs. Relative Fullness

326

DATA STRUCTURES

PTR = ENTNUM * 8

PTR=PTR+
TABLE STARTING
ADDRESS

Fig. 9-40: Initialize Subroutine

STORE BUFFER
AT TABLE (PTR)

Fig. 9-41: “Store” Routine

327

PROGRAMMING THE 6502

START

HASH KEY IN BUFFER
PUT RESULT IN INDX

—

INDEX = INDEX - ENTNUM

N

PTR = INDEX * 8

KEY AT TABLE (PTR)

MATCHES KEY IN BUFFER? INDEX = INDEX + 1

PLACE DATA UNIT AT
TABLE (PTR) IN BUFFER

Fig. 9-42: Retrieve Routine, “Find"

328

CLEAR A

'

A = (A) EXCLUSIVE
OR TABLE [PTR + Y]

Y

A=A*2

v

Y=Y-1

INDEX = A

Fig. 9-43: Hash Routine

DATA STRUCTURES

329

PROGRAMMING THE 6502

functions required to prevent unexpected situations be added. In
particular, one should guard against the possibility of a full table
or of an incorrect key since these might cause infinite loops to oc-
cur in the program. The reader is strongly encouraged to study
this program. Not only will it demystify a hashing algorithm, but
it will also solve an important practical problem encountered when
designing an assembler, or any other structure where tables of
names with their equivalent values must be kept in an efficient
way.

PAGE 0 HIGH MEMORY
PROGRAM $200
$10
TABLE LO NG
TABLE HI /
INDEX
PIR LO N TABLE
PTR HI L
ENTNUM
BUFFER
........ >
-------- -1
........ LA AL\

Fig. 9-44: Hash Store/Retrieve: Memory Maps

330

LINE 0 LOC

0002
0003
0004
0005
0008
0007
0008
000¢
0010
oo

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0034
0037
0038
0039
0040
00N

0042
0043
0044
0043
0046
0047
0048
0049
0050
0051
0052
0033
0034
0033
0034
0057
0038
0039
0060
0061

0042
0043
0064
0065
0046
0067
0049
008y

0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0010
0012
0013
0013
0016
001E
001E
0200
0200
0200
0200
0200
0202
0204
0207
0209
0208
0200
020F
0211

0213
0215
0217
0219
0218
0210
021F
0221

0222
0222
0222
0222
0222
0222
0222
0224
0227
0224
022¢
0226
0230
0233
0235
0238
0234
0230
0230
023E
023
023
023
023
023
0236
0240
0243

CODE

00 06

‘A3 15
85 13
20 72 02
A2 00
A9 00
A 13
Do 02
Cé 14
Cé 13
81 13
A3 13
€5 10
DO EE
A3 14
s 1
Do €8

A2 00
20 90 02
20 62 02

DATA STRUCTURES

LINE

sPROSRAM TO STORE ASSENBLER SYNSOLS IN &
STABLE, ACCESSED BY NASNING. TNE STMIOLS
SARE & CNRS, DATA 2. TNE MAXIMUN NEXNDER OF
s8-BYTE UNITS TO BE STORED IN TNE TASLE
SSHOULD DE 1N "ENTNUN’, BEGIMNIING ADBRESS OF
STADLE SNOULD BE IN “TABLE’. NOTE THAT
STABLE NUST BE INITIALIZED WITH ROUTINE

¢ "INIT’ PRIOR TO USE.

s1T IS THE RESPONSIBILITY OF THE CALLING
sPROSRAN MO TO EXCEED TNE TABLE SIZE.

s = 410
TABLE .UORD 4400 sSTARTING ADDRESS OF TABLE.
1DX e=eey SUUNBER OF DATA UNIT TO BE ACCESSED.
PTR o3842 SPOINTER TO DATA UNIT IN TABLE.
ENTNUN exset SNUNBER OF ENTRIES IN TABLE (256 MAX)
BUFFER s=eeg s1NPUT/ OUTPUT BUFFER.

s = $200

IROUTINE “INIT* s INITIALIZES TARLE
10 ZEROES.

INT LoA ENTHUR

STA PTR SSTORE 0 OF ENTRIES IN POINTER

JSR SHADD SHULTIPLY PTReS, ADD TABLE POINTER.

LDX 80 SCLEAR X FOR INDIRECT ADDRESSING.
CLRLP LDA 80 SGET CLEARING CONSTANT

LDY PTR

BNE BECR $IF PTR <> O, DIN’T DECRENENT Wl BYTE,

DEC PTR#1 SBECRENENT NI BYTE OF POINTER.
DECR DEC PTR SBECRERENT LO DYTE.

STA (PTR,X) JCLEAR LOCATION.

LBA PTR ;CNECK IF POINTER = TASLE POINTER,

CHP TABLE sIF UNEGUAL, CLEAR NEXT LOCATION.

BNE CLRLP

LBA PTR41

CHP TABLE+1

BNE CLRLP

RTS8

i

SROUTINE “STORE’s PLACES BUFFER CONTENTS IN
JTABLE, USING 15T & CNRS. OF BUFFER AS A
3/KEY’ TO DETERMINE NASHED ADDRESS I

STABLE.
’
STORE LDX #0 SCLEAR X FOR INDEXED ADDRESSING.
JSR HASR SOET HASNED INDEX.. .
CHPRY JSR LINIT SMAKE SURE INDEX 1S WITHIN DOINSS.
LBA (PTR,X) SCHECK DATA UNIT...
BEQ ENPTY 3JUNP IF ENPTY.
INC INDX STRY NEXT UNIT,
JHP CHPRY SCHECK FOR NEXT UNIT INDEX VALID,
ENPTY LDY B2 SLOCP 8X TO LOAD BDATA UNIT.

FILL LBA BUFFER,Y $6ET CHR FROM BUFFER,
8TA (PTR),Y SPLACE IT IN BUFFER.
BEY :

BPL FILL SXFER NEXT CNR.

RTS8 SADDITION DINC.

’

SROUTINE ‘FIND’ 2)
sFINDS ENTRY UHOSE KEY IS IN BUFFER
JENTRY, UHEN FOUND, 18 COPIED INTO
$BUFFER, ALONG UITH 2 DYTES OF DATA.

’
FIND LDX B0 $CLEAR X FOR INDIRECT ADDRESSINS.
JER HASH S6ET NASH PRODUCT. .

CHPR2 JSR LINIT FMAKE_SURE RESULT I8 WITHIN LINITS

Fig. 9-45: Hashing Program

331

PROGRAMMING THE 6502

0070 0246 A0 05 LDY uS 7LOOP 6X TO CONPARE BUFFER TO DATA ITEM.
0071 0248 B1 13 CHKLP LDA (PTR),Y FET CHR FROM TABLE.

0072 0244 D9 16 00 CHP BUFFER,Y ;I8 IT = BUFFER CHR?

0073 024D DO OF BNE BAD $IF NOT, TRY NEXT DATA UNIT.
0074 024F 88 DEY

0075 0250 10 Fé BPL CHKLP JCHECK NEXT CHRS.

0076 0252 A0 07 NATCH LDY #? sLOOP 8X TO XFER CHRS TO BUFFER.
0077 0254 B1 13 XFER LDA (PTR),Y $6ET CHR. FRON TABLE.

0078 0256 99 16 00 STA BUFFER,Y ;STORE IN BUFFER.

0079 0259 88 DEY

0080 025A 10 F8 BPL XFER ;LOOP TO XFER CHRS.

0081 025C 40 RTS IDONE sDATA UNIT FOUND, IN BUFFER.
0082 025D E4 12 BAD INC INDX ;NOT FOUND, TRY NEXT DATA UNIT.
0083 025F 4C 43 02 JNP CHPR2 SVALIDATE NEW DATA UNIT INDEX.
0084 0262 ;

0085 0262 FROUTINE TO WAKE SURE DATA INDEX 15 VITHIN

0088 0262 7BOUNDS SET BY ENTNUN, THEN WULTIPLY INDEX

0087 0262 $BY 8, AND ADD IT TO TABLE POINTER. THE

0088 0262 JRESULT IS PLACED IN “PTR’ AS DATA UNIT ADDRESS.

0089 0262 ;

0090 0262 A5 12 LINIT LDA INDX $GET INDEX,

0091 0264 C5 15 TEST CHP ENTNUM SINDEX > NUNBER OF DATA ITENS?
0092 0266 90 06 . BCC OK ;JUNP IF NOT,

0093 0248 38 SEC TYES -

0094 0269 ES 15 SBC ENTNUM FSUBTRACT # OF ITENS UNTIL
0095 0268 4C 64 02 JNP TEST INDEX UITHIN BOUNDS.

0096 026E 85 13 oK 8TA PTR $STORE 600D INDEX IN POINTER.
0097 0270 85 12 STA INDX $SAVE UPDATED INDEX.

0098 0272 A9 00 SHADD LDA 0 ;CLEAR UPPER POINTER FOR SHIFT.
0099 0274 85 14 - STA PTR#1

0100 0276 06 13 ASL PTR sSHIFT PTR 3X LEFT - NULTIPLY BY 8.
0101 0278 26 14 ROL PTR#1 .

0102 0274 06 13 ASL PTR

0103 027C 26 14 ROL PTR¢1

0104 027E 06 13 ASL PTR

0105 0280 26 14 ROL PTR#1

0106 0282 18 cLe

0107 0283 A5 10 LDA TABLE ;ADD POINTER AND TABLE START
0108 0285 45 13 ADC PTR JADDRESS AND PLACE RESULT IN POINTER.
0109 0287 85 13 STA PTR

0110 0289 AS 11 LDA TABLE+!

0111 0288 45 14 ADC PTR+1

0112 028D B85 14 STA PTR#1

0113 026F 40 RTS

0114 0290 :

0115 0290 sROUTINE TO BENERATE DATA UNIT INDEX IN TABLE

0116 0290 3BY HASHING “KEY’, OR CHRS OF LABEL.

0117 0290 :

0118 0290 A9 00 HASH LDA %0 sCLEAR LOCATION FOR INDEX.

0119 0292 18 cLe $PREPARE TO ADD.

0120 0293 A0 05 LDY ¥5 sLOOP 6X FOR EXCLUSIVE ORS.
0121 0295 59 16 00 EXOR EOR BUFFER,Y ;EXCLUSIVE-OR ACCUN. WITH BUFFER CHR.
0122 0298 24 ROL A sHULTIPLY ACCUN. BY 2.

0123 0299 68 DEY ;COUNT DOUN CHRS.

0124 0294 10 F9 BPL EXOR sBET NEXT CHR.

0125 029C 85 12 STA INDX SAVE HASH PRODUCT AS INDEX.

0126 029 60 RTS sDONE.

0127 029F LEND '

ERRORS = 0000 <0000>

SYNBOL TABLE

SYNBOL VALUE

BAD 025D BUFFER 0016 CHKLP 0248 [LRLP 020!

CHPR1 0227 (MPR2 0243 DECR 0211 EMPTY 0233
ENTNUN 0015 EXOR 0295 FILL 0235 FIND 023E
HASH 0290 INDX 0012 INIT 0200 LINIT 0222
MATCH 0252 OK 024E PIR 0013 SHADD (124
STORE 0222 TABLE 0010 TEST 0244 XFER 0254

END OF ASSEMBLY

Fig. 9-45: Hashing Program (cont.)

332

DATA STRUCTURES

BUBBLE-SORT

Bubble-sort is a sorting technique used to arrange the elements
of a table in ascending or descending order. The bubble-sort tech-
nique derives its name from the fact that the smallest element
“bubbles up”’ to the top of the table. Every time it ‘‘collides’ with
a ‘‘heavier”’ element, it jumps over it.

A practical example of bubble-sort is shown in Fig. 9-46. The list
to be sorted contains: 10, 5, 0, 2,and 100, and must be sorted in
descending order (“‘0”’ on top). The algorithm is simple, and the
flowchart is shown in Fig. 9-47.

The top two (or bottom two) elements are compared. If the
lower one is less (‘“‘lighter’’) than the top one they are exchanged.
Otherwise, they remain the same. For practical purposes, the exchange,
if it occurs, will be noted for future use. Then, the next pair of elements
will be compared, etc., until all elements have been compared two by two.

This first pass is illustrated by steps 1, 2, 3,4, 5, and 6 in Fig. 9-47,
going from the bottom up. (Equivalently, we would go from the top
down.)

If no elements have been exchanged in one pass, the sort is complete.
If an exchange has occurred, we start all over again.

Looking at Fig. 9-47, it can be seen that four passes are neces-
sary in this example.

The process described above is simple, and is widely used.

One additional complication resides in the actual mechanism of
the exchange. When exchanging A and B, one may not write:

A=B
B=A

as this would result in the loss of the previous value of A. (try it on
an example.)

The correct solution is to use a temporary variable or location to
preserve the value of A:

TEMP = A
A =B
B = TEMP

It works. (Again, try it on an example.) This is called a circular permu-
tation., and it is the way all programs implement the exchange. The
technique is illustrated in the flowchart of Fig. 9-47.

333

PROGRAMMING THE 6502

334

2 . |=4

100 l— | =5

100> 2:
NO CHANGE

O]

b

2

100

EXCHANGED

0
10 - |=2
2 | |=3
5
100
2<10:
EXCHANGED

0 [+— | 3

2 e | 4

100

220
NO CHANGE

®

o - 1=2

2

100

0<10:
EXCHANGED

2< 5:
EXCHANGED

EXCHANGED

©

100

0<5
EXCHANGE!

EXCHANGED
END OF PASS 1

®

END OF PASS 1

EXCHANGED

1

5 e | -2

. — | 3

b

0 [— |=)
- =2
10
£l
100
2>0:
NO CHANGE
END OF PASS 2

Fig. 9-46: Bubble-Sort Example

0
2
10
5 g— |=
100 [|=5

100> 5:
NO CHANGE

®

10
100

5>2:
NO CHANGE

10 l— |=4
100

10>5:
NO CHANGE

Fig. 9-46: Bubble-Sort Example (cont.)

5<10:
EXCHANGED

®

fe— 1=

- =2

10
100

2>0:
NO CHANGE

@)

END OF PASS 3

100

5>2:
NO CHANGE

s < 1=4

DATA STRUCTURES

EXCHANGED

®

0o
2

5
10 [=4

100 [I1=5

100 >10:
NO CHANGE

5
10

100

2>0:
NO CHANGE

@

END

335

PROGRAMMING THE 6502

\
EXCHANGED = 0

;

GET NUMBER OF
ELEMENTS N

B
READ ELEMENT
E(1)

i
DECREMENT 1|

NO

READ E’(1)

NO

EXCHANGE E AND E':
TEMP = E(I)
E() = E(I)
E()) = TEMP

\
EXCHANGED = 1

- \

336

Fig. 9-47: Bubble-Sort

DATA STRUCTURES

The memory map corresponding to the bubble-sort program is
shown in Fig. 9-48. In this program, every element will be an 8-bit
positive number. The program resides at addresses 200 and follow-
ing. Register X is used to memorize the fact that an exchange has
or has not occurred, while register Y is used as the running pointer
within the table. TAB is assumed to be the beginning address of
the table, The actual program appears in Fig. 9-49. Indirect in-
dexed addressing is used throughout for efficient accessing. Note
how short the program is, due to the efficiency of the indirect ad-
dressing mode of the 6502.

™= TABLE PTR =

0200
PROGRAM

NUMBER n -

ELEMENT 1

ELEMENT 2 Y X

PIR | EXCHANGED? I

CURRENT ELEMENT

ELEMENT n

Fig. 9-48: Bubble-Sort: Memory Map

337

PROGRAMMING THE 6502

SORT......PAGE 000!

LINE 0 LOC CoDE LINE

0002 0000 H BUBBLE SORT PROGKAN

0003 0000 H

0004 0000 LI [

0005 0000 V

0006 0000 00 06 TAB +WORD 9600

0007 0002 H

0008 0002 s = $200

0009 0200 H

0010 0200 A2 00 SORT LDX #0 1SET 'EXCHANGED® TO 0

0011 0202 Al 00 LDA (TAB,X)

0012 0204 48 TAY SNUNBER OF ELEMENTS IS IN Y
0013 0205 Bt 00 LOOP LDA (TAB),Y SREAD ELEMENT E(I)

0014 0207 88 DEY +DECREMENT NUMBER OF ELENENTS TO READ.
0015 0208 FO 12 BEQ FINISH JEND IF NO MORE ELEMENTS

0016 0204 D1 00 CHP (TAB),Y sCOMPARE 10 E“(D)

0017 020C BO F? BCS LooOP sGET NEXT ELEMENT IF E(D)SE"(])
0018 020 A4 EXCH TAX SEXCHANGE ELENENTS

0019 020F B1 00 LDA (TaB),Y

0020 o211 (8 INY

0021 0212 91 00 STA (TAB),Y

0022 0214 84 XA

0023 0215 88 DEY

0024 0216 91 00 STA (TAB), Y

0025 0218 A2 01 Lox m sSET “EXCHANGED "~ T0 1

0026 0214 DO E9 BNE LOOP $GET NEXT ELENENT

0027 021C 8A FINISH TxA SSHIFT "EXCHANGED TO A REG. FOR COMPARE...
0028 021D DO Et DNE SORT sIF SOME EXCHANGES NADE, DO ANOTHER PASS.
0029 021F &0 RTS

0030 0220 JEND

ERRORS = 0000 <0000>

SYNBOL TVABLE
SYNBOL VALUE

EXCH 020E FINISH 021C LOOP 0205 SORT 0200
T 0000
END OF ASSENBLY

<
<

Fig. 9-49: Bubble-Sort Program

338

START

PTRI = PTR2 =)

PTR1 >
TABLE! (0)?

PTR 2

>
TABLE 1 (0)
?

TABLE 1
(PTR1) >
TABLE 2 (PTR 2)

TEMP = TABLE! (PTRI)

PTIR 1 =PTR 141

| DESTBL (PTR3) = TEMP I

PTR3=PTR3+1

PTR1 >
TABLE1 (0)
AND

PTR2> TABLE2
0)?

Fig. 9-50: Merge Flowchart

DATA STRUCTURES

TEMP = TABLE2 (PTR2)

PTR2 = PTR2 + |

PTR3 = TABLE 1 (0)
+ TABLE 2 (0)

339

PROGRAMMING THE 6502

A MERGE ALGORITHM

Another common problem consists in merging two sets of data
into a third one. We will assume here that two tables of data have
been previously sorted, and we want to merge them into a third table. The
length of each of the two original tables will be limited to 256 bytes (one
page). The first entry of every table contains the length of the table.
of the table.

The algorithm for merging two tables is shown in Fig. 9-50. The
corresponding memory organization is shown in Fig. 9-51, and the
program appears in Fig. 9-52. Remember to set “TABLE1l”,
“TABLE2,”” and “DESTBL’’ before using it.

The algorithm itself is straightforward. Two running pointers
PTR1 and PTR2, point to the two source tables. PTR3 points to
the resulting table.

PAGE 0 HIGH MEMORY
$200
$10
PROGRAM
DESTBL LO
e NAANAANAAN
TABLE 1 1O
>__ o
TABLE | HI
TABE210 N\ TABLE 1 LEN
IR 4
PTR) TABLE | DATA
PR 2 e)
p—, ﬁ INAAN
PTR 3 HY 5
TABLE 2 LEN
ANAAN TABLE 2 DATA
TABIE 3

Fig. 9-51: Merge’ Memory Map

LINE 0 LOC

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0912
013
0014
001s
0016
001?
oone
001y
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0033
0036
03?7
0038
0039
000
0041t
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0935
0036
0057
0038
0059
0060
0061
0062
0043
0084
0043
0046
0067
0048
0069

0204
0206
o208
0204
020C
020E
0210
0212
0214
0214
0218
0214
o21C
021E
0220
0222
0224
0224
0224
0228
0224
022¢
022F
(23]
0233
0235
0237
0239
0238
023
023F
020
0243
0245
0247
0249
0243
0240
0248
0250
0252
0254
0256
0238
0254
025

ERRORS = 0000 <0000>
END OF ASSEMBLY

LI

$2-PAGE RERGE.
STAKES 2 DATA TANLES
SAND NERGES THEW 1NTO

DATA STRUCTURES

PREVIOUSLY SSRTED,
A THIRD TABLE.

SEACH SOURCE TABLE CAN DE UP TO 0N
SPASE (254 DYTES) IN LENGTN.

STHE FIRST ELEMENT OF
STABLES RUST CONTAIN

THE SOBRCE
THE TABLE LENGTN.

$PTR3” CONTAINS THE LENGTN OF TRE

SDESTINATION TADLE AT
’
e =810
DESTBL e=0e2
TABLEY s=0e2
TABLE2 s=942
PTR1 szsey
PIR2 s2e4)
PTIRI =042
’
= $200
’
LBA DESTBLet
STA PTRI+1
LBA DESTBL
STA PTR3
A n
STA PTRY
8TA PTR2
LIX 80
CONPR LBA (TADLE2,X)
CKP PTR2
BCC TKTHY
LBA (TABLE1,X)
CHP PTRY
BCC TKTH2
LDY PTRY
LBA (TABLEN),Y
LBY PTR2
CRP (TABDLE2),Y

RETURN.

sPOINTER TO BESINNING OF DESTINATION TABLE.
SPOINTER TO SOURCE TABLE 1.
sPOINTER TO SOURCE TABLE 2.

STABLE 1 INDEX.

STABLE 2 INDEX.

sDESTINATION TABLE INDEX.

$PTR3 = TABLE3

$SET SOURCE TABLE POINTERS TO BEGINNING,
SSKIPPING TABLE LENGTHS.

SCLEAR X FOR INDIRECT ADDRESSING.
+18 TABLE 2 LENGTN <

sTABLE 2 POINTER?

s1F YES, GET BYTE FROM TABLE 1.
318 TABLE 1 LENBTH <

STABLE 1 POINTER?

JIF VES, GET DYTE FRON TASLE 2
SGET POINTER FOR TABLE 1.

SUSE IT TO FETCH DYIE.

SOET POINTER FOR TAME 2,

FUSE IT TO FIND DYTE TO CONPARE

370 TABLE 1 BYTE.

BCC TKTHY
TKTD2 LDY PTR2
LDA (TABLE2),Y
INC PTR2
J#P STORE
TKTB1 LDV PTRY
LA (TABLEN),Y
INC PTRI
STORE STA (PTR3,X)
INC PTRI
BNE CC
INC PTRIY
cc LDA (TABLE1,X)
CAP PTR1
BCS CONPR
LA (TABLE2,X)
CHP PTR2
BCS COMPR
LDA 80
STA PTR3#1
cLe
LDA (TABLEY,X)
ADC (TADLE2,X)
STA PTR3
BCc ccc
s n
STA PTR3#1
ccc errs
END

Fig. 9-52

SIF TABLE 1 BITE LESS, TAKE 1T,

;65T POINTER FOR TAME 2.

SOET NEXT DYTE FRON TABLE 2.
SINCRENENT POINTER FOR TABLE 2.

760 STORE BYTE IN DESTIMATION TABLE.
S6ET POINTER 1...

$AND USE IT 70 GET BYVE. FRON TABLE.
SINCRENENT POINTER FOR TABLE 1.
$STORE BYTE AT NEXT LOCATION IN TABLE 3.
SINCRENENT LO ORDER TABLE 3 POINTER.
s1F MO OVERFLOW, SKIP

FINCRENENT NI ORDER TABLE 3 POINTER.
318 TABLE 1 LENGTH GREATER

STHAN OR EQUAL TO POINTER 1?

s1F YES, GET REXT BYTE.

$18 TABLE 2 LENSTN OREATER

sTHAR OR EQUAL TO POINTER 27

s1F YES, GET NEXT BYTE.

$CLEAR PTR3 NI ORDER.
SMERGE DONE, WOW..
SADD TABLE 1 AND 2 LENGTHS.

$STORE SUN IN TABLE 3 TEMPORARY POINTER.
SAND. .

SOVERFLOW IN...
SHI BYTE.

: Merge Program

K75 |

PROGRAMMING THE 6502

The current entries in TABLE1 and TABLEZ2 are compared two
at a time. The smaller one is copied into TABLE3 and the corresponding
running pointer is incremented. The process is repeated and terminates
when both PTR1 and PTR2 have reached the bottom of their respective

tables.

SUMMARY

The basic concepts relative to common data structures, as well
as actual implementation examples have been presented.

Because of its powerful addressing modes, the 6502 lends itself
well to the management of complex data structures. Its efficiency
is demonstrated by the terseness of the programs shown.

In addition, special techniques have been presented for hashing,
sorting and merging, which are typical of those required to solve
complex problems involving actual data structures.

The beginning programmer need not concern himself yet with
the details of data structures implementation and rmanagement.
However, for efficient programming of non-trivial algorithms, a good
understanding of data structures is required. The actual examples
presented in this chapter should help the reader achieve such an under-
standing and solve all the common problems encountered with reason-
able data structures.

342

10
PROGRAM DEVELOPMENT

INTRODUCTION

All the programs we have studied and developed so far have
been developed by hand without the aid of any software or
hardware resources. The only improvement we have used over
straight binary coding has been the use of mnemonic symbols,
those of the assembly language. For effective software develop-
ment, it is necessary to understand the range of hardware and
software development aids. It is the purpose of this chapter to
present and evaluate these aids.

BASIC PROGRAMMING CHOICES

Three basic alternatives exist: writing a program in binary or
hexadecimal, writing it in assembly-level language, or writing it
in a high-level language. Let us review these alternatives.

1. Hexadecimal Coding

The program will normally be written using assembly lan-
guage mnemonics. However, most low-cost, one-board computer
systems do not provide an assembler. The assembler is the pro-
gram which will automatically translate the mnemonics used for
the program into the required binary codes. When no assembler is
available, this translation from mnemonics into binary must be
performed by hand. Binary is unpleasant to use and error-prone,
so that hexadecimal is normally used. It has been shown in Chap-

343

PROGRAMMING THE 6502

ter 1 that one hexadecimal digit will represent 4 binary bits. Two
hexadecimal digits will, therefore, be used to represent the con-
tents of every byte. As an example, the table showing the
hexadecimal equivalent of the 6502 instructions appears in the
Appendix.

In short, whenever the resources of the user are limited and no
assembler is available, he will have to translate the program by
hand into hexadecimal. This can reasonably be done for a small
number of instructions, such as, perhaps, 10 to 100. For larger
programs, this process is tedious and error-prone, so that it tends
not to be used. However, nearly all single-board microcomputers
require the entry of programs in hexadecimal mode. They are not
equipped with an assembler and are not equipped with a full
alphanumeric keyboard, in order to limit their cost.

In summary, hexadecimal coding is not a desirable way to enter
a program in a computer. It is simply an economical one. The cost
of an assembler and the required alphanumeric keyboard is
traded-off against increased labor to enter the program in the
memory. However, this does not change the way the program it-
self is written. The program is still written in assembly-level language
so that it can be not only meaningful, but also capable of inspection
and examination by the human programmer.

2. Assembly Language Programming

Assembly-level programming covers programs that may be entered
in hexadecmial, as well as those that may be entered in symbolic
assembly-level form, in the system. Let us now directly examine the
entry of a program, in its assembly language representation. An
assembler program must be available. The assembler will read each of
the mnemonic instructions of the program and translate it into the re-
quired bit pattern using 1, 2 or 3 bytes, as specified by the encoding of
the instructions. Inaddition, a good assembler will offer a number of
additional facilities for writing the program. These will be reviewed in
the section on the assembler below. In particular, directives are available
which will modify the value of symbols. Symbolic addressing may be used,
and a branch to a symbolic location may be specified. During the

34

PROGRAM DEVELOPMENT

debugging phase where a user may remove instructions. or add
instructions, it will not be necessary to re-write the entire pro-
gram if an extra instruction is inserted between a branch and the

POWER OF
THE
LANGUAGE

PN
1 an
| cosoL

FORTRAN HIGH-LEVEL

PL/M
PASCAL

BASIC
| | MINI-BASIC

MACRO
SYMBOLIC CONDITIONAL ASSEMBLY-LEVEL
ASSEMBLY

[11

—

HEXADECIMAL/
— OCTAL
MACHINE-LEVEL

BINARY

Fig. 10-1: Programming Levels

point to which it branches, as long as symbolic labels are used.
The assembler will automatically adjust all of the labels during the
translation process. In addition, an assembler allows the user to debug
his/her program in symbolic form. A disassembler may be used to
examine the contents of a memory location and reconstruct the
assembly-level instruction that it represents. The various software re-
sources normally available on a system will be reviewed below. Let us
now examine the third alternative.

3. High-Level Language

A program may be written in a high-level language such as
BASIC, APL, PASCAL, or others. Techniques for programming in
these various languages are covered by specific books and will not

345

PROGRAMMING THE 6502

be reviewed here. We will, therefore, only briefly review this mode
of programming. A high-level language offers powerful instruc-
tions which make programming much easier and faster. These
instructions must then be translated by a complex program into
the final binary representation that a microcomputer can execute.
Typically, each high-level instruction will be translated into a
large number of individual binary instructions. The program
which performs this automatic translation is called a compiler or
an interpreter. A compiler will translate all the instructions of a
program in sequence into object code. In a separate phase, the
resulting code will then be executed. By contrast, an interpreter
will interpret a single instruction and execute it, then
“translate” the next one and execute it. An interpreter offers the
advantage of interactive response, but results in low efficiency
compared to a compiler. These topics will not be studied further
here. Let us revert to the programming of an actual microproces-
sor at the assembly-level language.

SOFTWARE SUPPORT

We will review here the main software facilities which are (or
should be) available in the complete system for convenient
software development. Some of the programs have already been intro-
duced, and definitions of these will be summarized below. Definitions
of other important programs will also be provided before we proceed.

The assembler is the program which translates the mnemonic
representation of instructions into their binary equivalent. It
normally translates one symbolic instruction into one binary in-
struction (which may occupy 1,2, or 3 bytes). The resulting binary
code is called object code. It is directly executable by the mi-
crocomputer. As a side effect, the assembler will also produce a
complete symbolic listing of the program, as well as the equiva-
lence tables to be used by the programmer and the symbol oc-
currence list in the program. Examples will be presented later in
this chapter.

A compiler is the program which translates high-level lan-
guage instructions into their binary form.

An interpreter is a program similar to a compiler. It also trans-
lates high-level instructions into their binary form, but instead

346

PROGRAM DEVELOPMENT

of keeping the intermediate representations, it executes the instruc-
tions immediately. In fact, if often does not even generate any inter-
mediate code, but rather executes the high-level instructions directly.

A monitor is an indispensable program for using the hardware
resources of this system. It continuously monitors the input devices
for input and also manages the rest of the devices. As an example,
a minimal monitor for a single-board microcomputer, equipped with
a keyboard and with LEDs, must continuously scan the keyboard for
user input and display the specified contents on the light-emitting-
diodes. In addition, it must be capable of understanding a number of
limited commands from the keyboard, such as START, STOP, CON-
TINUE, LOAD MEMORY, and EXAMINE MEMORY. On a large
system, the monitor is often qualified as the executive program. When
complex file management or task scheduling is also provided, the
overall set of facilities is called an operating system. In the case in
which files may be resident on a disk, the operating system is quali-
fied as the disk operating system, or DOS.

An editor is the program designed to facilitate the entry and
the modification of text or programs. It allows the user to conve-
niently enter characters, append them, insert them, add lines, re-
move lines, and search for characters or strings. It is an important
resource for convenient and effective text entry.

A debugger is a facility necessary for debugging programs.
Typically, when a program does not work correctly, there may
be no indication whatsoever of the cause. The programmer, there-
fore, wishes to insert break-points in his program in order to sus-
pend the execution of the program at specified addresses and to
be able to examine the contents of registers or memory at these
points. This is the primary function of a debugger. The debugger
allows for the possibility of suspending a program, resuming
execution, examining, displaying and modifying the contents of
registers or memory. A good debugger will be equipped with a
number of additional facilities, such as the possibility of examin-
ing data in symbolic form, hex, binary, or other usual representa-
tions, as well as entering data in this format.

A loader, or linking loader, will place various blocks of object

347

PROGRAMMING THE 6502

code at specified positions in the memory and adjust their respect-
ive symbolic pointers so that they can reference each other. It is
used to relocate programs or blocks in various memory areas.

A simulator, or an emulator program is used to simulate the opera-
tion of a device, usually the microprocessor, in its absence, when
developing a program on a simulated processor prior to placing it
on the actual board. Using this approach, it becomes possible to suspend
the program, modify it, and keep it in RAM memory. The disadvantages
of a simulator are that:

1. It usually simulates only the processor itself, not input/
output devices.

2. The execution speed is slow, and one must operate in simulated
time. It is therefore impossible to test real-time devices, which may
result in synchronization problems even though the logic of the
program may be found to be correct.

An emulator is actually a simulator in real time. It uses one

processor to simulate another one, and simulates it in complete
detail.

Utility routines are essentially all of the routines that the user
wishes the manufacturer had provided! They may include multi-
plication, division and other arithmetic operations, block move
routines, character tests, input/output device handlers (or ‘‘driv-
ers’’), and more.

'THE PROGRAM DEVELOPMENT SEQUENCE

We will now examine a typical sequence for developing an
assembly-level program. In order to demonstrate their value, we will
assume that all the usual software facilities are available. If all of
them should not be available in a particular system, it would still be
possible to develop programs, but the convenience would be de-
creased, and therefore, the amount of time necessary to debug the
program would most likely be increased.

348

PROGRAM DEVELOPMENT

The normal approach is to first design an algorithm and define
the data structures for the problem to be solved. Next, a com-
prehensive set of flow-charts is developed which represents the
program flow. Finally, the flow-charts are translated into the as-
sembly-level language for the microprocessor; this is the coding
phase.

Next, the program has to be entered on the computer. We will
examine in the following section the hardware options to be used in
this phase.

The program is entered in RAM memory of the system under
the control of the editor. Once a section of the program, such as a
subroutine, has been entered, it will be tested.

First, the assembler will be used. If the assembler does not al-
ready reside in the system, it will be loaded from an external
memory, such as a disk. Then, the program will be assembled, i.e.,
translated into a binary code. This results in the object program,
ready to be executed.

One does not normally expect a program to work correctly the
first time. To verify its correct operation, a number of breakpoints
will normally be set at crucial locations where it is easy to test
whether the intermediate results are correct. The debugger will
be used for this purpose. Breakpoints will be specified at selected
locations. A “Go” command will then be issued so that program
execution is started. The program will automatically stop at each
of the specified breakpoints. The programmer can then verify, by
examining the contents of the registers, or memory, that the data
so far is correct. If it is correct, we proceed until the next break-
point. Whenever we find incorrect data, an error in the program
has been found. At this point the programmer normally refers to
his program listing and verifies whether his coding has been cor-
rect. If no error can be found in the programming, the error might
be a logical one that refers back to the flowchart. We will
assume here that the flow-charts have been checked by hand and
are assumed to be reasonably correct. The error is likely to come
from the coding. It will, therefore, be necessary to modify a sec-
tion of the program. If the symbolic representation of the program
is still in the memory, we will simply re-enter the editor and
modify the required lines, then go through the preceding se-
quence again. In some systems, the memory available may not be

349

PROGRAMMING THE 6502

large enough, so that it is necessary to flush out the symbolic
representation of the program onto a disk or cassette prior to
executing the object code. Naturally, in such a case, one would
have to reload the symbolic representation of the program from
its support medium prior to entering the editor again.

The above procedure will be repeated as long as necessary until
the results of the program are correct. Let us stress that preven-
tion is much more effective than cure. A correct design will typi-
cally result very quickly in a program which runs correctly once
the usual typing mistakes or obvious coding errors have been
removed. However, sloppy design may result in programs which
will take an extremely long time to be debugged. The debugging
time is generally considered to be much longer than the actual
design time. In short, it is always worth investing more time in
the design in order to shorten the debugging phase.

Although using this approach makes it possible to test the overall or-
ganization of the program, it does not lend itself to testing the pro-
gram in terms of real time and input/output devices. If input/output
devices are to be tested, the direct solution consists of transferring the
program onto EPROMs and installing it on the board where it can
be watched to see whether it works or not.

There is an even better solution, and that is the use of an in-circuit
emulator. An in-circuit emulator uses the 6502 microprocessor (or
any other microprocessor) to emulate a 6502 in (almost) real time. It
emulates the 6502 physically. The emulator is equipped with a cable
terminated by a 40-pin connector, exactly identical to the pin-out of a
6502. This connector can be inserted on the real application board that one
is developing. The signals generated by the emulator will be
exactly those of the 6502, only perhaps a little slower. The essen-
tial advantage is that the program under test will still reside in
the RAM memory of the development system. It will generate the
real signals which will communicate with the real input/output
devices that one wishes to use. As a result, it becomes possible to
keep developing the program using all the resources of the devel-
opment system (editor, debugger, symbolic facilities, file system)
while testing input/output in real time.

In addition, a good emulator will provide special facilities, such
as a trace. A trace is a recording of the last instructions or status

350

PROGRAM DEVELOPMENT

of various data busses in the system prior to a breakpoint. In
short, a trace provides the film of the events that occurred prior to
the breakpoint or the malfunction. It may even trigger a scope at
a specified address or upon the occurrence of a specified combina-
tion of bits. Such a facility is of great value, since when an error is
found it is usually too late. The instruction, or the data, which
caused the error has occured prior to the detection. The availability
of a trace allows the user to find which segment of the program
caused the error to occur. If the trace is not long enough, we can
simply set an earlier breakpoint.

ROM RAM
ASSEMBLER
ORrR
COMPILER
TSTRAP
BOOT e
INTERPRETER
KEYBOARD
DRIVER pos
EDITOR
OR
DISPLAY
DEBUGGER
DRIVER or
SIMULATOR
Y SYSTEM
DRIVER 'WORKSPACE
(AND STACK)
CASSETTE USER
ORIVER PROGRAM
COMMAND USER
INTERPRETER 'WORKSPACE
unury
ROUTINES
ELEMENTARY
DEBUGGER
ELEMENTARY
EDITOR
Fig. 10-2: ATypical Memory Map

This completes our description of the usual sequence of
events involved in developing a program. Let us now review the
hardware alternatives available for developing programs.

351

PROGRAMMING THE 6502
THE HARDWARE ALTERNATIVES

1. Single-Board Microcomputer

The single-board microcomputer offers the lowest cost approach
to program development. It is normally equipped with a hexadec-
imal keyboard, some function keys, and 6 LEDs which can display
address and data. Since it is equipped with a small amount of
memory, no assembler is usually available. At best, it has a small
monitor and no editing or debugging facilities, except for a very
few commands. All programs must, therefore, be entered in hex-
adecimal form. They will also be displayed in hexadecimal form on
the LEDs. A single-board microcomputer has, in theory, the
same hardware power as any other computer. However, because
of its restricted memory size and keyboard, it does not support all
the usual facilities of a larger system, and this makes program
development,much longer. The tediousness of developing programs
in hexadecimal format makes a single-board microcomputer
best suited for educational and training purposes where programs
of limited length are desirable. Single-boards are probably the
cheapest way to learn programming by doing. However, they
cannot be used for complex program development, unless additional
memory boards are attached and the usual software aids are made
available.

2. The Development System

A development system is a microcomputer system equipped
with a significant amount of RAM memory (32K - 48K) as well as
the required input/output devices, such as a CRT display, a
printer, disks, and usually a PROM programmer, as well as,
perhaps, an in-circuit emulator. A development system is
specifically designed to facilitate program development in an in-
dustrial environment. It normally offers all, or most, of the
software facilities that we have mentioned in the preceding sec-
tion. In principle, it is the ideal software development tool.

The limitation of a microcomputer development system is that
it may not be capable of supporting a compiler or an interpreter.

352

PROGRAM DEVELOPMENT

-
Ry B q
i wen JLowsw L ove
e -
@B Ay g % !
%i‘ SR A 76 RS
= - Eeg s B
- G

Fig. 10-3: SYM 1 is a Typical Microcomputer Board

Fig. 10-4: Rockwell System 65 Is a Development System

353

PROGRAMMING THE 6502

This is because a compiler typically requires a very large amount

of memory, often more than is available in the system. However,

for developing programs in assembly-level language, the development

system offers all the required facilities. Unfortunately, because

development systems sell in relatively small numbers compared to.
hobby computers, their cost is significantly higher.

3. Hobby-Type Microcomputers

The hobby-type microcomputer hardware is analogous to that of a
development system. The main difference lies in the fact that the
hobby-type microcomputer is normally not equipped with the
sophisticated software development aids which are available on
an industrial development system. As an example, many hobby-
type microcomputers offer only elementary assemblers, minimal
editors, minimal file systems, no facilities to attach a PROM pro-
grammer, no in-circuit emulator, no powerful debugger. They rep-
resent, therefore, an intermediate step between the single-board
microcomputer and the full microprocessor development system.
For a user who wishes to develop programs of modest complexity,
they are probably the best compromise since they offer the advan-
tage of low cost and a reasonable array of software development
tools, even though they are quite limited as to their convenience.

4. Time- Sharing Systems

Several companies rent terminals that can be connected to time-
sharing computer networks. These terminals share the time of the
larger computer and benefit from all the advantages of large installa-
tions. Cross assemblers are available for all microcomputers in
virtually all commercial time-sharing systems. A cross assembler is
simply an assembler for, say, a 6502, which resides, for example, in
an IBM370. Formally, a cross assembler is an assembler for micro-
processor X, which resides on processor Y. The nature of the com-
puter being used is irrelelvant. The user still writes a program in 6502
assembly-level language, and the cross assembler translates it into the
appropriate binary pattern. The only difficulty lies in the fact that this
program cannot be executed immediately. It can be executed by a

354

PROGRAM DEVELOPMENT

simulated processor, if one is available, but only if the program does
not use any input/output resources. Because of this drawback, there-
fore, time-sharing is practical only in industrial environments.

5. In-House Computer

Whenever a large in-house computer is available, cross as-
semblers may also be available to facilitate program devel-
opment. If such a computer offers time-sharing service, this option
is essentially analogous to the one above. If it offers only batch
service, this is probably one of the most inconvenient methods of
program development, since submitting programs in batch mode
at the assembly level for a microprocessor results in a very long
development time.

Front Panel or No Front Panel?

The front panel is a hardware accessory often used to facilitate
program debugging. It has been the traditional tool for displaying the
binary contents of a register, or of memory, conveniently. However,
most of the functions of the control panel may now be accomplished
from a terminal through a CRT display. The CRT, with its ability to
display the binary value of bits, thus offers a service almost equiva-
lent to the control panel. The additional advantage of using the CRT
display is that one can switch at will from binary representation to
hexadecimal, to symbolic, to decimal (if the appropriate conversion
routines are available, naturally). The main disadvantage of the CRT
is that instead of turning a knob, one must hit several keys to obtain
the appropriate display. However, since the cost of providing a
control panel is quite substantial, most recent microcomputers have
abandonned this debugging tool in favor of the CRT. The value of
the control panel, then, is often evaluated more in function of
emotional arguments based on one’s own past experience rather than
by a rational choice. It is not indispensable.

SUMMARY OF HARDWARE RESOURCES

Three broad cases may be distinguished. If you have only a
minimal budget, and if you wish to learn how to program, buy a

355

PROGRAMMING THE 6502

one-board microcomputer. Using it, you will be able to develop all
the simple programs of this book and many more. Eventually,
however, when you want to develop programs of more than a few
hundred instructions, you will feel the limitations of this ap-
proach.

If you are an industrial user, you will need a full development
system. Any solution short of the full development system will
cause a significantly longer development time. The trade-off is
clear: hardware resources vs.programming time. Naturally, if the
programs to be developed are quite simple, a less expensive ap-
proach may be used. However, if complex programs are to be
developed, it is difficult to justify any hardware savings when
buying a development system; the resultant programming costs will
far exceed any such savings.

For a personal computerist, a hobby-type microcomputer will
typically offer sufficient, although minimal, facilities. Good de-
velopment software is still to come for most of the hobby com-
puters. The user will have to evaluate his system in view of the
comments presented in this chapter. _

Let us now analyze in more detail the most indispensable re-
source: the assembler.

THE ASSEMBLER

We have used assembly-level language throughout this book
without presenting the formal syntax or definitions of assembly-
level language. The time has come to present these definitions.
An assembler is designed to provide a convenient symbolic repre-
sentation of the user program, while at the same time providing a
simple means of converting these mnemonics into their binary
representation.

Assembler Fields

When typing in a program for the assembler, we have seen that
fields are used. They are:

The label field, optional, which may contain a symbolic address
for the instruction that follows.

The instruction field, which includes the opcode and any oper-
ands. (A separate operand field may be distinguished.)

The comment field, to the far right, which is optional and is
intended to clarify the program.

356

PROGRAM DEVELOPMENT

SINIWWOD

ANVJ33dO

340240
JINOIWAS

138v1

€

[4

1

NOILONALSNI

X3H

SsRaav

Fig. 10-5: Microprocessor Programming Form

357

PROGRAMMING THE 6502

Once the program has been fed to the assembler, the assembler will
produce a listing of it. When generating a listing, the assembler will
provide three additional fields, usually on the left of the page. An
example appears in Fig. 10-6. On the far left is the line number. Each
line which has been typed by the programmer is assigned a symbolic
line number.

The next field to the right is the actual address field, which shows
in hexadecimal the value of the program counter which will point to
that instruction.

The next field to the right is the hexadecimal representation of the
instruction.

This shows one of the possible uses of an assembler. Even if we are
designing programs for a single-board microcomputer which accepts
only hexadecimal, we can still write the programs in assembly-level:
language, providing we have access to a system equipped with an as-
sembler. We can then run the programs on the system, using the as--
sembler. The assembler will automatically generate the correct hexa-
decimal codes, which we can simply type in on our system. This
shows, in a simple example, the value of additional software resources.

Tables

When the assembler translates the symbolic program into its binary
representation, it performs two essential tasks:

1. It translates the mnemonic instructions into their binar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>